scholarly journals INDOOR 3D POINT CLOUDS SEMANTIC SEGMENTATION BASES ON MODIFIED POINTNET NETWORK

Author(s):  
J. Zhao ◽  
X. Zhang ◽  
Y. Wang

Abstract. Indoor 3D point clouds semantics segmentation is one of the key technologies of constructing 3D indoor models,which play an important role on domains like indoor navigation and positioning,intelligent city, intelligent robot etc. The deep-learning-based methods for point cloud segmentation take on higher degree of automation and intelligence. PointNet,the first deep neural network which manipulate point cloud directly, mainly extracts the global features but lacks of learning and extracting local features,which causes the poor ability of segmenting the local details of architecture and affects the precision of structural elements segmentation . Focusing on the problems above,this paper put forward an automatic end-to-end segmentation method base on the modified PointNet. According to the characteristic that the intensity of different indoor structural elements differ a lot, we input the point cloud information of 3D coordinate, color and intensity into the feature space of points. Also,a MaxPooling is added into the original PointNet network to improve the ability of attracting and learning local features. In addition, replace the 1×1 convolution kernel of original PointNet with 3×3 convolution kernel in the process of attracting features to improve the segmentation precision of indoor point cloud. The result shows that this method improves the automation and precision of indoor point cloud segmentation for the precision achieves over 80% to segment the structural elements like wall,door and so on ,and the average segmentation precision of every structural elements achieves 66%.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3568 ◽  
Author(s):  
Takayuki Shinohara ◽  
Haoyi Xiu ◽  
Masashi Matsuoka

In the computer vision field, many 3D deep learning models that directly manage 3D point clouds (proposed after PointNet) have been published. Moreover, deep learning-based-techniques have demonstrated state-of-the-art performance for supervised learning tasks on 3D point cloud data, such as classification and segmentation tasks for open datasets in competitions. Furthermore, many researchers have attempted to apply these deep learning-based techniques to 3D point clouds observed by aerial laser scanners (ALSs). However, most of these studies were developed for 3D point clouds without radiometric information. In this paper, we investigate the possibility of using a deep learning method to solve the semantic segmentation task of airborne full-waveform light detection and ranging (lidar) data that consists of geometric information and radiometric waveform data. Thus, we propose a data-driven semantic segmentation model called the full-waveform network (FWNet), which handles the waveform of full-waveform lidar data without any conversion process, such as projection onto a 2D grid or calculating handcrafted features. Our FWNet is based on a PointNet-based architecture, which can extract the local and global features of each input waveform data, along with its corresponding geographical coordinates. Subsequently, the classifier consists of 1D convolutional operational layers, which predict the class vector corresponding to the input waveform from the extracted local and global features. Our trained FWNet achieved higher scores in its recall, precision, and F1 score for unseen test data—higher scores than those of previously proposed methods in full-waveform lidar data analysis domain. Specifically, our FWNet achieved a mean recall of 0.73, a mean precision of 0.81, and a mean F1 score of 0.76. We further performed an ablation study, that is assessing the effectiveness of our proposed method, of the above-mentioned metric. Moreover, we investigated the effectiveness of our PointNet based local and global feature extraction method using the visualization of the feature vector. In this way, we have shown that our network for local and global feature extraction allows training with semantic segmentation without requiring expert knowledge on full-waveform lidar data or translation into 2D images or voxels.


2021 ◽  
Vol 13 (16) ◽  
pp. 3140
Author(s):  
Liman Liu ◽  
Jinjin Yu ◽  
Longyu Tan ◽  
Wanjuan Su ◽  
Lin Zhao ◽  
...  

In order to deal with the problem that some existing semantic segmentation networks for 3D point clouds generally have poor performance on small objects, a Spatial Eight-Quadrant Kernel Convolution (SEQKC) algorithm is proposed to enhance the ability of the network for extracting fine-grained features from 3D point clouds. As a result, the semantic segmentation accuracy of small objects in indoor scenes can be improved. To be specific, in the spherical space of the point cloud neighborhoods, a kernel point with attached weights is constructed in each octant, the distances between the kernel point and the points in its neighborhood are calculated, and the distance and the kernel points’ weights are used together to weight the point cloud features in the neighborhood space. In this case, the relationship between points are modeled, so that the local fine-grained features of the point clouds can be extracted by the SEQKC. Based on the SEQKC, we design a downsampling module for point clouds, and embed it into classical semantic segmentation networks (PointNet++, PointSIFT and PointConv) for semantic segmentation. Experimental results on benchmark dataset ScanNet V2 show that SEQKC-based PointNet++, PointSIFT and PointConv outperform the original networks about 1.35–2.12% in terms of MIoU, and they effectively improve the semantic segmentation performance of the networks for small objects of indoor scenes, e.g., the segmentation accuracy of small object “picture” is improved from 0.70% of PointNet++ to 10.37% of SEQKC-PointNet++.


2020 ◽  
Vol 12 (6) ◽  
pp. 1005 ◽  
Author(s):  
Roberto Pierdicca ◽  
Marina Paolanti ◽  
Francesca Matrone ◽  
Massimo Martini ◽  
Christian Morbidoni ◽  
...  

In the Digital Cultural Heritage (DCH) domain, the semantic segmentation of 3D Point Clouds with Deep Learning (DL) techniques can help to recognize historical architectural elements, at an adequate level of detail, and thus speed up the process of modeling of historical buildings for developing BIM models from survey data, referred to as HBIM (Historical Building Information Modeling). In this paper, we propose a DL framework for Point Cloud segmentation, which employs an improved DGCNN (Dynamic Graph Convolutional Neural Network) by adding meaningful features such as normal and colour. The approach has been applied to a newly collected DCH Dataset which is publicy available: ArCH (Architectural Cultural Heritage) Dataset. This dataset comprises 11 labeled points clouds, derived from the union of several single scans or from the integration of the latter with photogrammetric surveys. The involved scenes are both indoor and outdoor, with churches, chapels, cloisters, porticoes and loggias covered by a variety of vaults and beared by many different types of columns. They belong to different historical periods and different styles, in order to make the dataset the least possible uniform and homogeneous (in the repetition of the architectural elements) and the results as general as possible. The experiments yield high accuracy, demonstrating the effectiveness and suitability of the proposed approach.


2020 ◽  
Vol 34 (07) ◽  
pp. 12951-12958 ◽  
Author(s):  
Lin Zhao ◽  
Wenbing Tao

In this paper, we propose a novel joint instance and semantic segmentation approach, which is called JSNet, in order to address the instance and semantic segmentation of 3D point clouds simultaneously. Firstly, we build an effective backbone network to extract robust features from the raw point clouds. Secondly, to obtain more discriminative features, a point cloud feature fusion module is proposed to fuse the different layer features of the backbone network. Furthermore, a joint instance semantic segmentation module is developed to transform semantic features into instance embedding space, and then the transformed features are further fused with instance features to facilitate instance segmentation. Meanwhile, this module also aggregates instance features into semantic feature space to promote semantic segmentation. Finally, the instance predictions are generated by applying a simple mean-shift clustering on instance embeddings. As a result, we evaluate the proposed JSNet on a large-scale 3D indoor point cloud dataset S3DIS and a part dataset ShapeNet, and compare it with existing approaches. Experimental results demonstrate our approach outperforms the state-of-the-art method in 3D instance segmentation with a significant improvement in 3D semantic prediction and our method is also beneficial for part segmentation. The source code for this work is available at https://github.com/dlinzhao/JSNet.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Gong ◽  
Xiaofeng Du ◽  
Kai Zhu ◽  
Ke Lin ◽  
Qiaojun Lou ◽  
...  

The automated measurement of crop phenotypic parameters is of great significance to the quantitative study of crop growth. The segmentation and classification of crop point cloud help to realize the automation of crop phenotypic parameter measurement. At present, crop spike-shaped point cloud segmentation has problems such as fewer samples, uneven distribution of point clouds, occlusion of stem and spike, disorderly arrangement of point clouds, and lack of targeted network models. The traditional clustering method can realize the segmentation of the plant organ point cloud with relatively independent spatial location, but the accuracy is not acceptable. This paper first builds a desktop-level point cloud scanning apparatus based on a structured-light projection module to facilitate the point cloud acquisition process. Then, the rice ear point cloud was collected, and the rice ear point cloud data set was made. In addition, data argumentation is used to improve sample utilization efficiency and training accuracy. Finally, a 3D point cloud convolutional neural network model called Panicle-3D was designed to achieve better segmentation accuracy. Specifically, the design of Panicle-3D is aimed at the multiscale characteristics of plant organs, combined with the structure of PointConv and long and short jumps, which accelerates the convergence speed of the network and reduces the loss of features in the process of point cloud downsampling. After comparison experiments, the segmentation accuracy of Panicle-3D reaches 93.4%, which is higher than PointNet. Panicle-3D is suitable for other similar crop point cloud segmentation tasks.


Author(s):  
Y. Xu ◽  
Z. Sun ◽  
R. Boerner ◽  
T. Koch ◽  
L. Hoegner ◽  
...  

In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.


2021 ◽  
Vol 8 (2) ◽  
pp. 303-315
Author(s):  
Jingyu Gong ◽  
Zhou Ye ◽  
Lizhuang Ma

AbstractA significant performance boost has been achieved in point cloud semantic segmentation by utilization of the encoder-decoder architecture and novel convolution operations for point clouds. However, co-occurrence relationships within a local region which can directly influence segmentation results are usually ignored by current works. In this paper, we propose a neighborhood co-occurrence matrix (NCM) to model local co-occurrence relationships in a point cloud. We generate target NCM and prediction NCM from semantic labels and a prediction map respectively. Then, Kullback-Leibler (KL) divergence is used to maximize the similarity between the target and prediction NCMs to learn the co-occurrence relationship. Moreover, for large scenes where the NCMs for a sampled point cloud and the whole scene differ greatly, we introduce a reverse form of KL divergence which can better handle the difference to supervise the prediction NCMs. We integrate our method into an existing backbone and conduct comprehensive experiments on three datasets: Semantic3D for outdoor space segmentation, and S3DIS and ScanNet v2 for indoor scene segmentation. Results indicate that our method can significantly improve upon the backbone and outperform many leading competitors.


Author(s):  
A. Kharroubi ◽  
L. Van Wersch ◽  
R. Billen ◽  
F. Poux

Abstract. 3D point cloud of mosaic tesserae is used by heritage researchers, restorers and archaeologists for digital investigations. Information extraction, pattern analysis and semantic assignment are necessary to complement the geometric information. Automated processes that can speed up the task are highly sought after, especially new supervised approaches. However, the availability of labelled data necessary for training supervised learning models is a significant constraint. This paper introduces Tesserae3D, a 3D point cloud benchmark dataset for training and evaluating machine learning models, applied to mosaic tesserae segmentation. It is a publicly available, very high density and coloured dataset, accompanied by a standard multi-class semantic segmentation baseline. It consists of about 502 million points and contains 11 semantic classes covering a wide range of tesserae types. We propose a semantic segmentation baseline building on radiometric and covariance features fed to ensemble learning methods. The results delineate an achievable 89% F1-score and are made available under https://github.com/akharroubi/Tesserae3D, providing a simple interface to improve the score based on feedback from the research community.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4329 ◽  
Author(s):  
Guorong Cai ◽  
Zuning Jiang ◽  
Zongyue Wang ◽  
Shangfeng Huang ◽  
Kai Chen ◽  
...  

Semantic segmentation of 3D point clouds plays a vital role in autonomous driving, 3D maps, and smart cities, etc. Recent work such as PointSIFT shows that spatial structure information can improve the performance of semantic segmentation. Motivated by this phenomenon, we propose Spatial Aggregation Net (SAN) for point cloud semantic segmentation. SAN is based on multi-directional convolution scheme that utilizes the spatial structure information of point cloud. Firstly, Octant-Search is employed to capture the neighboring points around each sampled point. Secondly, we use multi-directional convolution to extract information from different directions of sampled points. Finally, max-pooling is used to aggregate information from different directions. The experimental results conducted on ScanNet database show that the proposed SAN has comparable results with state-of-the-art algorithms such as PointNet, PointNet++, and PointSIFT, etc. In particular, our method has better performance on flat, small objects, and the edge areas that connect objects. Moreover, our model has good trade-off in segmentation accuracy and time complexity.


2021 ◽  
Vol 13 (4) ◽  
pp. 691
Author(s):  
Xiaoxiao Geng ◽  
Shunping Ji ◽  
Meng Lu ◽  
Lingli Zhao

Semantic segmentation of LiDAR point clouds has implications in self-driving, robots, and augmented reality, among others. In this paper, we propose a Multi-Scale Attentive Aggregation Network (MSAAN) to achieve the global consistency of point cloud feature representation and super segmentation performance. First, upon a baseline encoder-decoder architecture for point cloud segmentation, namely, RandLA-Net, an attentive skip connection was proposed to replace the commonly used concatenation to balance the encoder and decoder features of the same scales. Second, a channel attentive enhancement module was introduced to the local attention enhancement module to boost the local feature discriminability and aggregate the local channel structure information. Third, we developed a multi-scale feature aggregation method to capture the global structure of a point cloud from both the encoder and the decoder. The experimental results reported that our MSAAN significantly outperformed state-of-the-art methods, i.e., at least 15.3% mIoU improvement for scene-2 of CSPC dataset, 5.2% for scene-5 of CSPC dataset, and 6.6% for Toronto3D dataset.


Sign in / Sign up

Export Citation Format

Share Document