Distributed stochastic model predictive control for cyber–physical systems with multiple state delays and probabilistic saturation constraints

Automatica ◽  
2021 ◽  
Vol 129 ◽  
pp. 109574
Author(s):  
Langwen Zhang ◽  
Bohui Wang ◽  
Yuanlong Li ◽  
Yang Tang
Author(s):  
Jicheng Chen ◽  
Yang Shi

In the era of Industrial 4.0, the next-generation control system regards the cyber-physical system (CPS) as the core ingredient thanks to the comprehensive integration of physical systems, online computation, networking and control. A reliable, stable and resilient CPS should pledge robustness and safety. A significant concern in CPS development arises from security issues since the CPS is vulnerable to physical constraints, ubiquitous uncertainties and malicious cyber attacks. The integration of the stochastic model predictive control (MPC) framework and the resilient mechanism is a possible approach to guarantee robustness in the presence of stochastic uncertainties and enable resilience against cyber attacks. This review paper aims to offer a detailed overview of existing stochastic MPC algorithms and their CPS applications. More specifically, we first review existing stochastic MPC algorithms for both linear and nonlinear systems subject to probabilistic constraints. We then discuss how to extend the stochastic MPC framework to incorporate resilience mechanisms for constrained CPS under various malicious attacks. Finally, we present an architectural stochastic MPC-based framework for resilient CPS and identify future research challenges. This article is part of the theme issue ‘Towards symbiotic autonomous systems’.


2021 ◽  
pp. 1-19
Author(s):  
ZUOXUN LI ◽  
KAI ZHANG

Abstract A stochastic model predictive control (SMPC) algorithm is developed to solve the problem of three-dimensional spacecraft rendezvous and docking with unbounded disturbance. In particular, we only assume that the mean and variance information of the disturbance is available. In other words, the probability density function of the disturbance distribution is not fully known. Obstacle avoidance is considered during the rendezvous phase. Line-of-sight cone, attitude control bandwidth, and thrust direction constraints are considered during the docking phase. A distributionally robust optimization based algorithm is then proposed by reformulating the SMPC problem into a convex optimization problem. Numerical examples show that the proposed method improves the existing model predictive control based strategy and the robust model predictive control based strategy in the presence of disturbance.


2018 ◽  
Vol 33 (4) ◽  
pp. 4397-4406 ◽  
Author(s):  
Ranjeet Kumar ◽  
Michael J. Wenzel ◽  
Matthew J. Ellis ◽  
Mohammad N. ElBsat ◽  
Kirk H. Drees ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document