saturation constraints
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4389
Author(s):  
Matteo Ravasio ◽  
Gian Paolo Incremona ◽  
Patrizio Colaneri ◽  
Andrea Dolcini ◽  
Piero Moia

Recently, the introduction of electric vehicles has given rise to a new paradigm in the transportation field, spurring the public transport service in the direction of using completely electric bus fleets. In this context, one of the main challenges is that of guaranteeing an optimal scheduling of the charging process, while reducing the power supply requested from the main grid, and improving the efficiency of the resource allocation. Therefore, in this paper, a power allocation strategy is proposed in order to optimize the charging of electric bus fleets, while fulfilling the limitation imposed on the maximum available power, as well as ensuring limited charging times. Specifically, relying on real bus charging scenarios, a charging optimization algorithm based on a Nonlinear Additive Increase Multiplicative Decrease (NAIMD) strategy is proposed and discussed. This approach is designed on the basis of real charging power curves related to the batteries of the considered vehicles. Moreover, the adopted NAIMD algorithm allows us to minimize the sum of charging times in the presence of saturation constraints in a distributed way and with a small amount of aggregated data sent over the communication network. Finally, an extensive simulation campaign is illustrated, showing the effectiveness of the proposed approach both in allocating the power resources and in sizing the maximum power capacity of charging plants in progress.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei Cao ◽  
Jinjie Qiao ◽  
Ming Sun

To solve trajectory tracking problem of switched system with sensor saturation, an iterative learning control algorithm is proposed. The method uses actual measurement error to modify the control variable of system on the premise that switched rule does not change along iteration axis, but it randomly changes along time axis. Moreover, by dealing with the saturation via diagonal matrix method, the convergence of the algorithm is strictly proved in the sense of λ-norm, and the convergence condition is derived. The algorithm can achieve complete tracking of desired trajectory in the finite time interval under the random switched rule, as iterations increase. The simulation example verifies the validity of the proposed algorithm.


2021 ◽  
Vol 33 (2) ◽  
pp. 283-291
Author(s):  
Satoshi Satoh ◽  
Hironori Saijo ◽  
Katsuhiko Yamada ◽  
◽  

This paper considers the position and attitude control of a quadcopter in the presence of stochastic disturbances. Basic quadcopter dynamics is modeled as a nonlinear stochastic system described by a stochastic differential equation. Subsequently, the position and attitude control is formulated as a nonlinear stochastic optimal control problem with input saturation constraints. To solve this problem, a continuous-time stochastic differential dynamic programming (DDP) method with input saturation constraints is newly proposed. Finally, numerical simulations demonstrate the effectiveness of the proposed method by comparing it with the linear quadratic Gaussian and the deterministic DDP with input saturation constraints.


Author(s):  
Mohammad Pourmahmood Aghababa ◽  
Bogdan Marinescu ◽  
Florent Xavier

In this research, we aim to use the flatness control theory to develop a useful control scheme for a single machine connected to an infinite bus (SMIB) system taking into account input magnitude and rate saturation constraints. We adopt a fourth-order nonlinear SMIB model along an exciter and a turbine governor as actuators. According to the flatness-based control strategy, first we show that the adopted nominal SMIB model is a flat system. Then, we develop a full linearizing state feedback as well as an outer integral-type loop to ensure suitable tracking performances for the power and voltage as well as the angular velocity outputs. We assume that only the angular velocity of the generator is available to be measured. So, we provide a linear Luenberger observer to estimate the remaining states of the system. Also, the saturation nonlinearities are transferred to the linear part of the system and they are canceled out using their estimations. The efficiency and usefulness of the proposed observer-controller against faults are illustrated using simulation tests in Eurostag and Matlab. The results show that the clearing critical time of the introduced methodology is larger than the classical control approaches and the proposed observer-based flatness controller exhibits over much less control energy compared to the classic IEEE controllers.


Sign in / Sign up

Export Citation Format

Share Document