scholarly journals Recovery dynamics and invasibility of herbaceous plant communities after exposure to experimental climate extremes

2015 ◽  
Vol 16 (7) ◽  
pp. 583-591 ◽  
Author(s):  
Freja E. Dreesen ◽  
Hans J. De Boeck ◽  
Joanna A. Horemans ◽  
Ivan A. Janssens ◽  
Ivan Nijs
2013 ◽  
Vol 10 (10) ◽  
pp. 15851-15877
Author(s):  
F. E. Dreesen ◽  
H. J. De Boeck ◽  
I. A. Janssens ◽  
I. Nijs

Abstract. Disturbance events such as climatic extremes may enhance the invasibility of plant communities, through the creation of gaps and the associated local increase in available resources. In this study, experimental herbaceous communities consisting of three species were subjected to 50 yr extreme drought and/or heat events, in spring, summer or autumn. In the year of the induced extremes, species mortality and end-of-season biomass were examined. In two subsequent years without further disturbances, establishment of new species was recorded. The drought and drought + heat extremes in summer and autumn induced greater plant mortality compared with the heat extremes in those seasons and compared with all extremes applied in spring, in all three originally planted species. Recovery in terms of biomass towards the end of the growing season, however, was species-specific. The dominant species, the nitrogen fixer Trifolium repens, recovered poorly from the drought and drought + heat extremes which governed the community response. Community biomass, which was heavily affected by the drought and especially by the drought + heat events in summer and autumn, reached control values already one year later. Invasibility was increased in the communities that underwent the drought + heat extremes in the first year following the extreme events, but no longer in the second year. During the two years of invasion, the community composition changed, but independently of the type and impact of the extreme event. In short, the extreme climate events greatly affected the survival and productivity of the species, modified the species composition and dominance patterns, and increased the invasibility of our plant communities. However, none of these community properties seemed to be affected in the long term, as the induced responses faded out after one or two years.


2014 ◽  
Vol 11 (1) ◽  
pp. 109-121 ◽  
Author(s):  
F. E. Dreesen ◽  
H. J. De Boeck ◽  
I. A. Janssens ◽  
I. Nijs

Abstract. The probability that plant communities undergo successive climate extremes increases under climate change. Exposure to an extreme event might elicit acclimatory responses and thereby greater resistance to a subsequent event, but might also reduce resistance if the recovery period is too short or resilience too low. Using experimental herbaceous plant assemblages, we compared the effects of two successive extremes occurring in one growing season (either two drought extremes, two heat extremes or two drought + heat extremes) to those of assemblages being exposed only to the second extreme. Additionally, the recovery period between the successive extremes was varied (2, 3.5 or 6 weeks). Among the different types of climate extremes, combined heat + drought extremes induced substantial leaf mortality and plant senescence, while the effects of drought and heat extremes were smaller. Preceding drought + heat extremes lowered the resistance in terms of leaf survival to a subsequent drought + heat extreme if the recovery period was two weeks, even though the leaves had completely recovered during that interval. No reduced resistance to subsequent extremes was recorded with longer recovery times or with drought or heat extremes. Despite the substantial mortality on the short term, the drought + heat and the heat extremes increased the end-of-season aboveground biomass independent of the number of extreme events or the duration of the recovery period. These results show that recurrent climate extremes with short time intervals can weaken the resistance of herbaceous plant assemblages. This negative effect in the short term can, however, be compensated in the longer term through rapid recovery and secondary positive effects.


2013 ◽  
Vol 10 (6) ◽  
pp. 9149-9177 ◽  
Author(s):  
F. E. Dreesen ◽  
H. J. De Boeck ◽  
I. A. Janssens ◽  
I. Nijs

Abstract. The probability that plant communities undergo successive climate extremes increases under climate change. Exposure to an extreme event might elicit acclimatory responses and thereby greater resistance to a subsequent event, but might also reduce resistance if the recovery period is too short or resilience too low. Using experimental plant assemblages, we compared the effects of two successive extremes (either two drought extremes, two heat extremes or two drought + heat extremes) to those of assemblages being exposed only to the second extreme. Additionally, the recovery period between the successive extremes was varied (2, 3.5 or 6 weeks). Among the different types of climate extremes, combined drought + heat extremes induced substantial leaf and plant mortality, while the effects of drought and heat extremes were smaller. Preceding drought + heat extremes lowered the resistance in terms of leaf survival to a subsequent drought + heat extreme if the recovery period was 2 weeks, even though the leaves had completely recovered during that interval. No reduced resistance to subsequent extremes was recorded with longer recovery times or with drought or heat extremes. Despite mortality on the short term, the drought + heat and the heat extremes increased the end-of-season aboveground biomass, independent of the number of events or the recovery period. These results show that the effect of a preceding extreme event disappears quite quickly, but that recurrent climate extremes with short time intervals can weaken the resistance of herbaceous plant assemblages. This can however be compensated afterwards through rapid recovery and secondary, positive effects in the longer term.


2015 ◽  
Vol 46 (3) ◽  
pp. 213-221 ◽  
Author(s):  
T. V. Zhuikova ◽  
E. V. Meling ◽  
S. Yu. Kaigorodova ◽  
V. S. Bezel’ ◽  
V. A. Gordeeva

Authorea ◽  
2020 ◽  
Author(s):  
Jose Capitan ◽  
Sara Cuenda ◽  
Alejandro Ordonez ◽  
David Alonso

Ecology ◽  
1978 ◽  
Vol 59 (2) ◽  
pp. 228-234 ◽  
Author(s):  
Sandra Jo Newell ◽  
Elliot J. Tramer

2010 ◽  
Vol 189 (3) ◽  
pp. 806-817 ◽  
Author(s):  
Hans J. De Boeck ◽  
Freja E. Dreesen ◽  
Ivan A. Janssens ◽  
Ivan Nijs

Oikos ◽  
1991 ◽  
Vol 61 (3) ◽  
pp. 441 ◽  
Author(s):  
Jonathan Silvertown ◽  
Pam Dale

Sign in / Sign up

Export Citation Format

Share Document