scholarly journals The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes

2007 ◽  
Vol 1767 (12) ◽  
pp. 1428-1435 ◽  
Author(s):  
Thomas Veith ◽  
Claudia Büchel
2011 ◽  
Vol 433 (3) ◽  
pp. 477-485 ◽  
Author(s):  
Emilie Wientjes ◽  
Roberta Croce

The outer antenna of higher-plant PSI (Photosystem I) is composed of four complexes [Lhc (light-harvesting complex) a1–Lhca4] belonging to the light-harvesting protein family. Difficulties in their purification have so far prevented the determination of their properties and most of the knowledge about Lhcas has been obtained from the study of the in vitro reconstituted antennas. In the present study we were able to purify the native complexes, showing that Lhca2/3 and Lhca1/4 form two functional heterodimers. Both dimers show red-fluorescence emission with maxima around 730 nm, as in the intact PSI complex. This indicates that the dimers are in their native state and that LHCI-680, which was previously assumed to be part of the PSI antenna, does not represent the native state of the system. The data show that the light-harvesting properties of the two dimers are functionally identical, concerning absorption, long-wavelength emission and fluorescence quantum yield, whereas they differ in their high-light response. Implications of the present study for the understanding of the energy transfer process in PSI are discussed. Finally, the comparison of the properties of the native dimers with those of the reconstituted complexes demonstrates that all of the major properties of the Lhcas are reproduced in the in vitro systems.


1993 ◽  
Vol 340 (1294) ◽  
pp. 381-392 ◽  

Employing discontinuous sucrose density gradient centrifugation of n -dodecyl β-d-maltoside-solubilized thylakoid membranes, three chlorophyll (Chl)-protein complexes containing Chl a , Chl c 2 and peridinin in different proportions, were isolated from the dinoflagellates Symbiodinium microadriaticum, S. kawagutii, S. pilosum and Heterocapsa pygmaea . In S. microadriaticum , the first complex, containing 13% of the total cellular Chl a , and minor quantities of Chl c 2 and peridinin, is associated with polypeptides with apparent molecular mass ( M r ) of 8-9 kDa, and demonstrated inefficient energy transfer from the accessory pigments to Chl a . The second complex contains Chl a , Chl c 2 and peridinin in a molar ratio of 1:1:2, associated with two apoproteins of M r 19-20 kDa, and comprises 45%, 75% and 70%, respectively, of the cellular Chl a , Chl c 2 and peridinin. The efficient energy transfer from Chl c 2 and peridinin to Chl a in this complex is supportive of a light-harvesting function. This Chl a - c 2 - peridin-protein complex represents the major light-harvesting complex in dinoflagellates. The third complex obtained contains 12% of the cellular Chl a , and appears to be the core of photosystem I, associated with a light-harvesting complex. This complex is spectroscopically similar to analogous preparations from different taxonomic groups, but demonstrates a unique apoprotein composition. Antibodies against the water-soluble peridinin-Chl a -protein (sPCP) light-harvesting complexes failed to cross-react with any of the thylakoid-associated complexes, as did antibodies against Chl a - c -fucoxanthin apoprotein (from diatoms). Antibodies against the P 700 apoprotein of plants did not cross-react with the photosystem I complex. Similar results were observed in the other dinoflagellates.


2010 ◽  
Vol 1797 (2) ◽  
pp. 212-221 ◽  
Author(s):  
Milena Mozzo ◽  
Manuela Mantelli ◽  
Francesca Passarini ◽  
Stefano Caffarri ◽  
Roberta Croce ◽  
...  

2011 ◽  
Vol 286 (52) ◽  
pp. 44878-44887 ◽  
Author(s):  
Bartlomiej Drop ◽  
Mariam Webber-Birungi ◽  
Fabrizia Fusetti ◽  
Roman Kouřil ◽  
Kevin E. Redding ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Tianyu Bai ◽  
Lin Guo ◽  
Mingyu Xu ◽  
Lirong Tian

Photosystem I (PSI) is one of the most efficient photoelectric apparatus in nature, converting solar energy into condensed chemical energy with almost 100% quantum efficiency. The ability of PSI to attain such high conversion efficiency depends on the precise spatial arrangement of its protein subunits and binding cofactors. The PSI structures of oxygenic photosynthetic organisms, namely cyanobacteria, eukaryotic algae, and plants, have undergone great variation during their evolution, especially in eukaryotic algae and vascular plants for which light-harvesting complexes (LHCI) developed that surround the PSI core complex. A detailed understanding of the functional and structural properties of this PSI-LHCI is not only an important foundation for understanding the evolution of photosynthetic organisms but is also useful for designing future artificial photochemical devices. Recently, the structures of such PSI-LHCI supercomplexes from red alga, green alga, diatoms, and plants were determined by X-ray crystallography and single-particle cryo-electron microscopy (cryo-EM). These findings provide new insights into the various structural adjustments of PSI, especially with respect to the diversity of peripheral antenna systems arising via evolutionary processes. Here, we review the structural details of the PSI tetramer in cyanobacteria and the PSI-LHCI and PSI-LHCI-LHCII supercomplexes from different algae and plants, and then discuss the diversity of PSI-LHCI in oxygenic photosynthesis organisms.


2007 ◽  
Vol 93 (7) ◽  
pp. 2418-2428 ◽  
Author(s):  
Roberta Croce ◽  
Agnieszka Chojnicka ◽  
Tomas Morosinotto ◽  
Janne A. Ihalainen ◽  
Frank van Mourik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document