scholarly journals Isolation and pigment composition of the reaction centers from purple photosynthetic bacterium Rhodopseudomonas palustris species

2012 ◽  
Vol 1817 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Tadashi Mizoguchi ◽  
Megumi Isaji ◽  
Jiro Harada ◽  
Hitoshi Tamiaki
2007 ◽  
Vol 11 (03) ◽  
pp. 205-211 ◽  
Author(s):  
László Kálmán ◽  
Arlene L. M. Haffa ◽  
JoAnn C. Williams ◽  
Neal W. Woodbury ◽  
James P. Allen

The rates of electron transfer from ferrocene to the oxidized bacteriochlorophyll dimer, P , in reaction centers from the purple photosynthetic bacterium Rhodobacter sphaeroides, were measured for a series of mutants in which the P / P + midpoint potentials range from 410 to 765 mV (Lin et al. Proc. Natl. Acad. Sci. USA 1994; 91: 10265-10269). The observed rate constant for each mutant was found to be linearly dependent upon the ferrocene concentration up to 50 μM. The electron transfer is described as a second order reaction with rate constants increasing from 1.5 to 35 × 106 M -1. s -1 with increasing P / P + midpoint potential. This dependence was tested for three additional mutants, each of which exhibits a pH dependence of the P / P + midpoint potential due to an electrostatic interaction with an introduced carboxylic group (Williams et al. Biochemistry 2001; 40: 15403-15407). For these mutants, the pH dependence of the bimolecular rate constants followed a sigmoidal pattern that could be described with a Henderson-Hasselbalch equation, attributable to the change of the free energy difference for the reaction due to deprotonation of the introduced carboxylic side chains.


2018 ◽  
Vol 7 (4) ◽  
Author(s):  
Amiera Rayyan ◽  
Terry Meyer ◽  
John Kyndt

Rhodopseudomonas palustris is known for its versatile metabolic capabilities and has been proposed for a wide range of innovative applications. Here, we report the genome sequence of strain XCP, as well as a whole-genome nucleotide comparison of R. palustris strains, which indicates the need for further differentiation of the known strains.


2012 ◽  
Vol 78 (18) ◽  
pp. 6619-6629 ◽  
Author(s):  
Heidi A. Crosby ◽  
Katherine C. Rank ◽  
Ivan Rayment ◽  
Jorge C. Escalante-Semerena

ABSTRACTMalonyl coenzyme A (malonyl-CoA) and methylmalonyl-CoA are two of the most commonly used extender units for polyketide biosynthesis and are utilized to synthesize a vast array of pharmaceutically relevant products with antibacterial, antiparasitic, anticholesterol, anticancer, antifungal, and immunosuppressive properties. Heterologous hosts used for polyketide production such asEscherichia colioften do not produce significant amounts of methylmalonyl-CoA, however, requiring the introduction of other pathways for the generation of this important building block. Recently, the bacterial malonyl-CoA synthetase class of enzymes has been utilized to generate malonyl-CoA and methylmalonyl-CoA directly from malonate and methylmalonate. We demonstrate that in the purple photosynthetic bacteriumRhodopseudomonas palustris, MatB (RpMatB) acts as a methylmalonyl-CoA synthetase and is required for growth on methylmalonate. We report theapo(1.7-Å resolution) and ATP-bound (2.0-Å resolution) structure and kinetic analysis ofRpMatB, which shows similar activities for both malonate and methylmalonate, making it an ideal enzyme for heterologous polyketide biosynthesis. Additionally, rational, structure-based mutagenesis of the active site ofRpMatB led to substantially higher activity with ethylmalonate and butylmalonate, demonstrating that this enzyme is a prime target for expanded substrate specificity.


2011 ◽  
Vol 440 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Tatas H. P. Brotosudarmo ◽  
Aaron M. Collins ◽  
Andrew Gall ◽  
Aleksander W. Roszak ◽  
Alastair T. Gardiner ◽  
...  

The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Detailed analysis of their absorption spectra reveals that there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucABa and PucABb apoproteins. The LL complexes contain PucABa, PucABd and PucBb-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra. Crystallographic studies and molecular sieve chromatography suggest that both the HL and the LL complexes are nonameric. Furthermore, the electron-density maps do not support the existence of an additional Bchl (bacteriochlorophyll) molecule; rather the density is attributed to the N-termini of the α-polypeptide.


Sign in / Sign up

Export Citation Format

Share Document