free energy difference
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Zhaoxi Sun ◽  
Qiaole He

The combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method could be used to obtain the QM thermodynamics by combining the SQM or MM results and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (~20 folds) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the sampling is performed fully in the nonequilibrium ensemble. Introducing very short ps-length equilibrium sampling to grab more initial seeds could also be helpful. The ASMD scheme estimates the free energy difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements of the EXP estimator. Another deficiency of the seeding simulation is the inherently sequential or serial pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the simulation. Numerical tests are performed to grasp some insights and guidelines for using this selection-criterion-based ASMD scheme. The presented selection-criterion-based multi-dimensional ASMD scheme follows the same perturbation network of the BAR-based method, and thus could be used in various Hamiltonian-variation cases.


2021 ◽  
Vol 7 (2) ◽  
pp. 69-75
Author(s):  
S. P. Khanal ◽  
B. Poudel ◽  
R. P. Koirala ◽  
N. P. Adhikari

In the present work, we have used an alchemical approach for calculating solvation free energy of protonated lysine in water from molecular dynamics simulations. These approaches use a non-physical pathway between two end states in order to compute free energy difference from the set of simulations. The solute is modeled using bonded and non-bonded interactions described by OPLS-AA potential, while four different water models: TIP3P, SPC, SPC/E and TIP4P are used. The free energy of solvation of protonated lysine in water has been estimated using thermodynamic integration, free energy perturbation, and Bennett acceptance ratio methods at 310 K temperature. The contributions to the free energy due to van der Waals and electrostatics parameters are also separately computed. The estimated values of free energy of solvation using different methods are in well agreement with previously reported experimental value within 14 %.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marcin Łobejko

AbstractIn classical thermodynamics, the optimal work is given by the free energy difference, what according to the result of Skrzypczyk et al. can be generalized for individual quantum systems. The saturation of this bound, however, requires an infinite bath and ideal energy storage that is able to extract work from coherences. Here we present the tight Second Law inequality, defined in terms of the ergotropy (rather than free energy), that incorporates both of those important microscopic effects – the locked energy in coherences and the locked energy due to the finite-size bath. The former is solely quantified by the so-called control-marginal state, whereas the latter is given by the free energy difference between the global passive state and the equilibrium state. Furthermore, we discuss the thermodynamic limit where the finite-size bath correction vanishes, and the locked energy in coherences takes the form of the entropy difference. We supplement our results by numerical simulations for the heat bath given by the collection of qubits and the Gaussian model of the work reservoir.


2021 ◽  
Author(s):  
Zhaoxi Sun ◽  
Qiaole He

<p>The combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method is often applied to obtain the QM thermodynamics by combining the SQM or MM thermodynamics and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (~20 fold) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the sampling is performed fully in the nonequilibrium ensemble. The ASMD scheme estimates the free energy difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements of the EXP estimator. Another consequence of the seeding simulation is the inherently sequential or serial pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the simulation. Therefore, some tests are required to grasp some insights and guidelines for using this selection-criterion-based ASMD scheme. The ASMD method is tested thoroughly on a dihedral flipping model system and encouraging numerical results are obtained. The selection-criterion-based multi-dimensional ASMD framework follows the same perturbation framework of the BAR-based method, and thus could be used in various Hamiltonian-variation cases.</p>


2021 ◽  
Author(s):  
Zhaoxi Sun ◽  
Qiaole He

<p>The combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method is often applied to obtain the QM thermodynamics by combining the SQM or MM thermodynamics and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (~20 fold) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the sampling is performed fully in the nonequilibrium ensemble. The ASMD scheme estimates the free energy difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements of the EXP estimator. Another consequence of the seeding simulation is the inherently sequential or serial pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the simulation. Therefore, some tests are required to grasp some insights and guidelines for using this selection-criterion-based ASMD scheme. The ASMD method is tested thoroughly on a dihedral flipping model system and encouraging numerical results are obtained. The selection-criterion-based multi-dimensional ASMD framework follows the same perturbation framework of the BAR-based method, and thus could be used in various Hamiltonian-variation cases.</p>


2021 ◽  
Author(s):  
Arangasamy Yazhini ◽  
Das Swayam Prakash Sidhanta ◽  
Narayanaswamy Sriniva

Abstract Background Spike protein is a key player in the SARS-CoV-2 infection by mediating primary contact between the virus and host cell surface. In the current COVID-19 pandemic, a variant of SARS-CoV-2 having D614G substitution in the spike protein has become dominant world-wide. Initial characterization of the virus shows that the G614 variant is more infectious and has higher fitness than the ancestral (D614) variant. In this study, we analyzed the significance of the D614G substitution on the protein flexibility, inter-residue interaction energies and thermostability of the spike protein trimer. Results Using Gaussian network model-based normal mode analysis, we demonstrate that D614G substitution occurs at hinge region that facilitates domain-domain motions between receptor binding domain and S2 region of the spike protein. Further, in-silico mutagenesis and inter-residue energy calculations reveal that contacts involving D614 are energetically frustrated whereas contacts involving G614 are energetically favourable implying the substitution strengthens intra- as well as inter-protomers association. Upon glycine substitution, free energy difference (ΔΔG) is -2.6 kcal/mol for closed and − 2.0 kcal/mol for 1-RBD up conformation i.e., thermodynamic stability has increased. When we perform reverse mutation in the structures of spike protein having G614 substitution, we observe that the free energy difference is 6.6 kcal/mol and 6.3 kcal/mol for closed and 1-RBD up conformations respectively indicating lowered thermodynamic stability. Together, these observations suggest that D614G substitution could modulate the flexibility of spike protein and confer enhanced thermodynamic stability. Conclusion Our results on protein flexibility and energetic basis of enhanced stability hint that G614 likely increases the availability of functional form of spike trimer thereby associated to increased infectivity.


2020 ◽  
Author(s):  
Arangasamy Yazhini ◽  
Das Swayam Prakash Sidhanta ◽  
Narayanaswamy Srinivasan

AbstractSARS-CoV-2 spike protein with D614G substitution has become the dominant variant in the ongoing COVID-19 pandemic. Several studies to characterize the new virus expressing G614 variant show that it exhibits increased infectivity compared to the ancestral virus having D614 spike protein. Here, using in-silico mutagenesis and energy calculations, we analyzed inter-residue interaction energies and thermodynamic stability of the dominant (G614) and the ancestral (D614) variants of spike protein trimer in ‘closed’ and ‘partially open’ conformations. We find that the local interactions mediated by aspartate at the 614th position are energetically frustrated and create unfavourable environment. Whereas, glycine at the same position confers energetically favourable environment and strengthens intra-as well as inter-protomer association. Such changes in the local interaction energies enhance the thermodynamic stability of the spike protein trimer as free energy difference (ΔΔG) upon glycine substitution is −2.6 kcal/mol for closed conformation and −2.0 kcal/mol for open conformation. Our results on the structural and energetic basis of enhanced stability hint that G614 may confer increased availability of functional form of spike protein trimer and consequent in higher infectivity than the D614 variant.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Sebastian Fischetti ◽  
Lucas Wallis ◽  
Toby Wiseman

Abstract We examine the renormalized free energy of the free Dirac fermion and the free scalar on a (2+1)-dimensional geometry ℝ × Σ, with Σ having spherical topology and prescribed area. Using heat kernel methods, we perturbatively compute this energy when Σ is a small deformation of the round sphere, finding that at any temperature the round sphere is a local maximum. At low temperature the free energy difference is due to the Casimir effect. We then numerically compute this free energy for a class of large axisymmetric deformations, providing evidence that the round sphere globally maximizes it, and we show that the free energy difference relative to the round sphere is unbounded below as the geometry on Σ becomes singular. Both our perturbative and numerical results in fact stem from the stronger finding that the difference between the heat kernels of the round sphere and a deformed sphere always appears to have definite sign. We investigate the relevance of our results to physical systems like monolayer graphene consisting of a membrane supporting relativistic QFT degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document