quinone binding
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 5)

H-INDEX

31
(FIVE YEARS 1)

Author(s):  
Nithin Dhananjayan ◽  
Panyue Wang ◽  
Igor Leontyev ◽  
Alexei A. Stuchebrukhov

AbstractAt the joint between the membrane and hydrophilic arms of the enzyme, the structure of the respiratory complex I reveals a tunnel-like Q-chamber for ubiquinone binding and reduction. The narrow entrance of the quinone chamber located in ND1 subunit forms a bottleneck (eye of a needle) which in all resolved structures was shown to be too small for a bulky quinone to pass through, and it was suggested that a conformational change is required to open the channel. The closed bottleneck appears to be a well-established feature of all structures reported so-far, both for the so-called open and closed states of the enzyme, with no indication of a stable open state of the bottleneck. We propose a squeeze-in mechanism of the bottleneck passage, where dynamic thermal conformational fluctuations allow quinone to get in and out. Here, using molecular dynamics simulations of the bacterial enzyme, we have identified collective conformational changes that open the quinone chamber bottleneck. The model predicts a significant reduction—due to a need for a rare opening of the bottleneck—of the effective bi-molecular rate constant, in line with the available kinetic data. We discuss possible reasons for such a tight control of the quinone passage into the binding chamber and mechanistic consequences for the quinone two-electron reduction. Graphic abstract


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Jana Deitersen ◽  
Lena Berning ◽  
Fabian Stuhldreier ◽  
Sara Ceccacci ◽  
David Schlütermann ◽  
...  

AbstractAutophagy is an intracellular recycling pathway with implications for intracellular homeostasis and cell survival. Its pharmacological modulation can aid chemotherapy by sensitizing cancer cells toward approved drugs and overcoming chemoresistance. Recent translational data on autophagy modulators show promising results in reducing tumor growth and metastasis, but also reveal a need for more specific compounds and novel lead structures. Here, we searched for such autophagy-modulating compounds in a flow cytometry-based high-throughput screening of an in-house natural compound library. We successfully identified novel inducers and inhibitors of the autophagic pathway. Among these, we identified arzanol as an autophagy-modulating drug that causes the accumulation of ATG16L1-positive structures, while it also induces the accumulation of lipidated LC3. Surprisingly, we observed a reduction of the size of autophagosomes compared to the bafilomycin control and a pronounced accumulation of p62/SQSTM1 in response to arzanol treatment in HeLa cells. We, therefore, speculate that arzanol acts both as an inducer of early autophagosome biogenesis and as an inhibitor of later autophagy events. We further show that arzanol is able to sensitize RT-112 bladder cancer cells towards cisplatin (CDDP). Its anticancer activity was confirmed in monotherapy against both CDDP-sensitive and -resistant bladder cancer cells. We classified arzanol as a novel mitotoxin that induces the fragmentation of mitochondria, and we identified a series of targets for arzanol that involve proteins of the class of mitochondria-associated quinone-binding oxidoreductases. Collectively, our results suggest arzanol as a valuable tool for autophagy research and as a lead compound for drug development in cancer therapy.


2021 ◽  
Vol 118 (15) ◽  
pp. e2022308118
Author(s):  
Xiaoting Zhou ◽  
Yan Gao ◽  
Weiwei Wang ◽  
Xiaolin Yang ◽  
Xiuna Yang ◽  
...  

Complex II, also known as succinate dehydrogenase (SQR) or fumarate reductase (QFR), is an enzyme involved in both the Krebs cycle and oxidative phosphorylation. Mycobacterial Sdh1 has recently been identified as a new class of respiratory complex II (type F) but with an unknown electron transfer mechanism. Here, using cryoelectron microscopy, we have determined the structure of Mycobacterium smegmatis Sdh1 in the presence and absence of the substrate, ubiquinone-1, at 2.53-Å and 2.88-Å resolution, respectively. Sdh1 comprises three subunits, two that are water soluble, SdhA and SdhB, and one that is membrane spanning, SdhC. Within these subunits we identified a quinone-binding site and a rarely observed Rieske-type [2Fe-2S] cluster, the latter being embedded in the transmembrane region. A mutant, where two His ligands of the Rieske-type [2Fe-2S] were changed to alanine, abolished the quinone reduction activity of the Sdh1. Our structures allow the proposal of an electron transfer pathway that connects the substrate-binding and quinone-binding sites. Given the unique features of Sdh1 and its essential role in Mycobacteria, these structures will facilitate antituberculosis drug discovery efforts that specifically target this complex.


2021 ◽  
Vol 7 (3) ◽  
pp. eabe2631
Author(s):  
David J. K. Swainsbury ◽  
Pu Qian ◽  
Philip J. Jackson ◽  
Kaitlyn M. Faries ◽  
Dariusz M. Niedzwiedzki ◽  
...  

The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo–electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris. A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.


2018 ◽  
Vol 1859 (7) ◽  
pp. 482-490 ◽  
Author(s):  
Jessica Petri ◽  
Yosuke Shimaki ◽  
Wanting Jiao ◽  
Hannah R. Bridges ◽  
Euan R. Russell ◽  
...  

2016 ◽  
Vol 1857 ◽  
pp. e51
Author(s):  
Ina Schweizer ◽  
Katharina Maurer ◽  
Stefan Steimle ◽  
Thorsten Friedrich
Keyword(s):  
E Coli ◽  

Sign in / Sign up

Export Citation Format

Share Document