scholarly journals Role of E. coli hydrogenases in proton motive force generation during glycerol fermentation at pH 7.5

2012 ◽  
Vol 1817 ◽  
pp. S153
Author(s):  
K. Trchounian ◽  
S. Marutyan ◽  
A. Trchounian
2002 ◽  
Vol 43 (2) ◽  
pp. 335-354 ◽  
Author(s):  
K. H. Rohde ◽  
A. F. Gillaspy ◽  
M. D. Hatfield ◽  
L. A. Lewis ◽  
D. W. Dyer

2017 ◽  
Author(s):  
Tatyana Perlova ◽  
Martin Gruebele ◽  
Yann R. Chemla

AbstractBlue light has been shown to elicit a tumbling response inE. coli, a non-phototrophic bacterium. The exact mechanism of this phototactic response is still unknown, and its biological significance remains unclear. Here, we quantify phototaxis inE. coliby analyzing single-cell trajectories in populations of free-swimming bacteria before and after light exposure. Bacterial strains expressing only one type of chemoreceptor reveal that all fiveE. colireceptors - Aer, Tar, Tsr, Tap and Trg - are capable of mediating a response to light. In particular, light exposure elicits a running response in Tap-only strain, the opposite of the tumbling response observed for all other strains. Light therefore emerges as a universal stimulus for allE. colichemoreceptors. We also show that blue light exposure causes a reversible decrease in swimming velocity, a proxy for proton motive force. We hypothesize that rather than sensing light directly, chemoreceptors sense light-induced perturbations in proton motive force.ImportanceOur findings provide new insights on the mechanism ofE. coliphototaxis, showing that all five chemoreceptor types respond to light and that their interactions play an important role in cell behavior. Our results also open up new avenues for examining and manipulatingE. colitaxis. Since light is a universal stimulus, it may provide a way to quantify interactions between different types of receptors. Since light is easier to control spatially and temporally than chemicals, it may be used to study swimming behavior in complex environments. Since phototaxis can cause migration ofE. colibacteria in light gradients, light may be used to control bacterial density for studying density-dependent processes in bacteria.


2010 ◽  
Vol 55 (3) ◽  
pp. 997-1007 ◽  
Author(s):  
Natacha Morin ◽  
Isabelle Lanneluc ◽  
Nathalie Connil ◽  
Marie Cottenceau ◽  
Anne Marie Pons ◽  
...  

ABSTRACTFor the first time, the mechanism of action of microcin L (MccL) was investigated in live bacteria. MccL is a gene-encoded peptide produced byEscherichia coliLR05 that exhibits a strong antibacterial activity against relatedEnterobacteriaceae, includingSalmonella entericaserovars Typhimurium and Enteritidis. We first subcloned the MccL genetic system to remove the sequences not involved in MccL production. We then optimized the MccL purification procedure to obtain large amounts of purified microcin to investigate its antimicrobial and membrane properties. We showed that MccL did not induce outer membrane permeabilization, which indicated that MccL did not use this way to kill the sensitive cell or to enter into it. Using a set ofE. coliandSalmonella entericamutants lacking iron-siderophore receptors, we demonstrated that the MccL uptake required the outer membrane receptor Cir. Moreover, the MccL bactericidal activity was shown to depend on the TonB protein that transduces the proton-motive force of the cytoplasmic membrane to transport iron-siderophore complexes across the outer membrane. Using carbonyl cyanide 3-chlorophenylhydrazone, which is known to fully dissipate the proton-motive force, we proved that the proton-motive force was required for the bactericidal activity of MccL onE. coli. In addition, we showed that a primary target of MccL could be the cytoplasmic membrane: a high level of MccL disrupted the inner membrane potential ofE. colicells. However, no permeabilization of the membrane was detected.


2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Tatyana Perlova ◽  
Martin Gruebele ◽  
Yann R. Chemla

ABSTRACTBlue light has been shown to elicit a tumbling response inEscherichia coli, a nonphototrophic bacterium. The exact mechanism of this phototactic response is still unknown. Here, we quantify phototaxis inE. coliby analyzing single-cell trajectories in populations of free-swimming bacteria before and after light exposure. Bacterial strains expressing only one type of chemoreceptor reveal that all fiveE. colireceptors (Aer, Tar, Tsr, Tap, and Trg) are capable of mediating responses to light. In particular, light exposure elicits a running response in the Tap-only strain, the opposite of the tumbling responses observed for all other strains. Therefore, light emerges as a universal stimulus for allE. colichemoreceptors. We also show that blue light exposure causes a reversible decrease in swimming velocity, a proxy for proton motive force. This result is consistent with a previously proposed hypothesis that, rather than sensing light directly, chemoreceptors sense light-induced perturbations in proton motive force, although other factors are also likely to contribute.IMPORTANCEOur findings provide new insights into the mechanism ofE. coliphototaxis, showing that all five chemoreceptor types respond to light and their interactions play an important role in cell behavior. Our results also open up new avenues for examining and manipulatingE. colitaxis. Since light is a universal stimulus, it may provide a way to quantify interactions among different types of receptors. Because light is easier to control spatially and temporally than chemicals, it may be used to study swimming behavior in complex environments. Since phototaxis can cause migration ofE. colibacteria in light gradients, light may be used to control bacterial density for studying density-dependent processes in bacteria.


1985 ◽  
Vol 153 (1) ◽  
pp. 161-165 ◽  
Author(s):  
Marieke G. L. ELFERINK ◽  
Klaas J. HELLINGWERF ◽  
Wil N. KONINGS

Sign in / Sign up

Export Citation Format

Share Document