swimming velocity
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 59)

H-INDEX

37
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Raul Filipe Bartolomeu ◽  
Pedro Rodrigues ◽  
Catarina Costa Santos ◽  
Mário Jorge Costa ◽  
Tiago Manuel Barbosa

The different characteristics of the four swimming strokes affect the interplay between the four limbs, acting as a constraint to the force produced by each hand and foot. The purpose of this study was to analyze the symmetry of force production with a varying number of limbs in action and see its effect on velocity. Fifteen male swimmers performed four all-out bouts of 25-m swims in the four strokes in full-body stroke and segmental actions. A differential pressure system was used to measure the hands/feet propulsive force and a mechanical velocity meter was used to measure swimming velocity. Symmetry index was calculated based on the force values. All strokes and conditions presented contralateral limb asymmetries (ranging from 6.73% to 28% for the peak force and from 9.3% to 35.7% for the mean force). Backstroke was the most asymmetric stroke, followed-up by butterfly, front crawl, and breaststroke. Kicking conditions elicited the higher asymmetries compared with arm-pull conditions. No significant associations were found between asymmetries and velocity. The absence of such association suggests that, to a certain and unknown extent, swimming may benefit from contralateral limb asymmetry.


2021 ◽  
Author(s):  
Tyler H. Lantiegne ◽  
Craig F. Purchase

Polyandrous mating systems result in females mating with multiple males. This includes the potential for unintended matings and subsequent sperm competition with hybridizing species, especially in the presence of alternative reproductive tactics (sneaker males). Cryptic female choice allows females to bias paternity towards preferred males under sperm competition and may include conspecific sperm preference when under hybridization threat. The potential becomes particularly important in context of invasive species that can novelly hybridize with natives. We provide the first examination of conspecific sperm preference in a system of three species with potential to hybridize: North American native Atlantic salmon (Salmo salar) and brook char (Salvelinus fontinalis), and invasive brown trout (Salmo trutta) from Europe. Using naturalized populations on the island of Newfoundland, we measured changes in sperm swimming performance, a known predictor of paternity, to determine the degree of upregulation to female cues related to conspecific sperm preference. Compared to water alone, female ovarian fluid in general had a pronounced effect and upregulated sperm motility (mean 53%) and swimming velocity (mean 30%). However, patterns in the degree of upregulation suggest there is no conspecific sperm preference in the North American populations. Furthermore, female cues from both native species tended to boost the sperm of invasive males more than their own. We conclude that cryptic female choice is too weak in this system to prevent invasive hybridization and is likely insufficient to promote or maintain reproductive isolation between the native species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danilo A. Massini ◽  
Tiago A. F. Almeida ◽  
Camila M. T. Vasconcelos ◽  
Anderson G. Macedo ◽  
Mário A. C. Espada ◽  
...  

This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake (V˙O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La–]. The lean mass of the trunk (LMTrunk), upper limb (LMUL), and lower limb (LMLL) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V˙O2 bi-exponential recovery phase and the second from the 2.72 ml × kg–1 equivalent for each 1.0 mmol × L–1 [La–] variation above the baseline value. The aerobic demand was obtained from the integral value of the V˙O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LMTrunk, LMUL, and LMLL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m–1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m–1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m–1) with p < 0.01 for all comparisons. In addition, C differed between distances for each sex (p < 0.01). The regional LMTrunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LMUL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LMLL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R2adj = 0.73), 100 (R2adj = 0.61), and 200 m (R2adj = 0.60, p < 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.


2021 ◽  
Author(s):  
Kalin Diane Konrad ◽  
Jia L. Song

MicroRNAs (miRNAs) regulate gene expression by destabilizing target mRNA and/or inhibiting translation in animal cells. The ability to mechanistically dissect the function of miR-124 during specification, differentiation, and maturation of neurons during development within a single system has not been accomplished. Using the sea urchin (Strongylocentrotus purpuratus) embryo, we take advantage of the manipulability of the embryo and its well-documented gene regulatory networks (GRNs). We incorporated NeuroD1 as part of the sea urchin neuronal GRN and determined that miR-124 inhibition resulted in decreased gut contractions, swimming velocity, and neuronal development. We further integrated post-transcriptional regulation of miR-124 into the neuronal GRN. Inhibition of miR-124 resulted in increased number of cells expressing transcription factors associated with progenitor neurons and a concurrent decrease of mature and functional neurons. Results revealed that miR-124 regulates undefined factors early in neurogenesis during neuronal specification and differentiation in the early blastula and gastrula stages. In the late gastrula and larval stages, miR-124 regulates Notch and NeuroD1. Specifically, miR-124 regulates the transition between neuronal differentiation and maturation, by directly suppressing NeuroD1. Removal of miR-124 ″s suppression of NeuroD1 results in increased mature neurons with decreased Synaptagmin B-positive mature, functional neurons. By removing both miR-124 suppression of NeuroD1 and Notch, we were able to phenocopy miR-124 inhibitor induced defects. Overall, we have improved the neuronal GRN and identified miR-124 to play a prolific role in regulating various transitions of neuronal development.


2021 ◽  
Vol 930 ◽  
Author(s):  
T. Omori ◽  
K. Kikuchi ◽  
M. Schmitz ◽  
M. Pavlovic ◽  
C.-H. Chuang ◽  
...  

Rheotaxis and migration of cells in a flow field have been investigated intensively owing to their importance in biology, physiology and engineering. In this study, first, we report our experiments showing that the microalgae Chlamydomonas can orient against the channel flow and migrate to the channel centre. Second, by performing boundary element simulations, we demonstrate that the mechanism of the observed rheotaxis and migration has a physical origin. Last, using a simple analytical model, we reveal the novel physical mechanisms of rheotaxis and migration, specifically the interplay between cyclic body deformation and cyclic swimming velocity in the channel flow. The discovered mechanism can be as important as phototaxis and gravitaxis, and likely plays a role in the movement of other natural microswimmers and artificial microrobots with non-reciprocal body deformation.


2021 ◽  
Vol 14 (1) ◽  
pp. 98-105
Author(s):  
Shin-Ichiro Moriyama ◽  
Yasunori Watanabe ◽  
Tsubasa Kurono ◽  
Jorge E. Morais ◽  
Daniel A. Marinho ◽  
...  

Background: When in water, the Centers of Buoyancy (CoB) and Mass (CoM) of the human body are positioned cranially and caudally, respectively. With increasing distance between these centers, the sinking torque of the lower limbs increases, with a subsequent decrease in swimming performance due to increased drag. Objective: To clarify the effect of additional buoyancy swimsuits on swimming performance. Methods: The subjects were eight competitive male swimmers of mean ±SD age 21±2 years. Swimming performance was compared between Conventional (CS) and Additional Buoyancy Swimsuits (ABS). CoM and CoB were identified on land and in water, respectively, with the swimmers maintaining a horizontal posture. CoM was measured by the reaction board method. CoB was calculated as the force exerted in the vertical direction accompanied by changes in inspiratory volume. Swimming velocity and Blood Lactate (BL) concentration value during 200 m front crawl in trials at four different speeds (curve test) were recorded as swimming performance. Results: No significant difference in inspiratory volume was observed between CS and ABS (small effect size, d=0.28). The distance between CoM and CoB was significantly shorter for CS than ABS (p < 0.001; large effect size, d=1.08). Both swimming velocity at BL of 4 mmol·L-1 and maximal effort were significantly faster for ABS (p < 0.042; 0.008), with large effect size (d=0.91; 0.98). However, there was no significant difference in maximal BL between CS and ABS (small effect size, d=0.37). Conclusion: ABS improves swimming performance by streamlining the horizontal posture.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 411
Author(s):  
David J. Smith ◽  
Meurig T. Gallagher ◽  
Rudi Schuech ◽  
Thomas D. Montenegro-Johnson

The method of regularised stokeslets is widely used to model microscale biological propulsion. The method is usually implemented with only the single-layer potential, the double-layer potential being neglected, despite this formulation often not being justified a priori due to nonrigid surface deformation. We describe a meshless approach enabling the inclusion of the double layer which is applied to several Stokes flow problems in which neglect of the double layer is not strictly valid: the drag on a spherical droplet with partial-slip boundary condition, swimming velocity and rate of working of a force-free spherical squirmer, and trajectory, swimmer-generated flow and rate of working of undulatory swimmers of varying slenderness. The resistance problem is solved accurately with modest discretisation on a notebook computer with the inclusion of the double layer ranging from no-slip to free-slip limits; the neglect of the double-layer potential results in up to 24% error, confirming the importance of the double layer in applications such as nanofluidics, in which partial slip may occur. The squirming swimmer problem is also solved for both velocity and rate of working to within a small percent error when the double-layer potential is included, but the error in the rate of working is above 250% when the double layer is neglected. The undulating swimmer problem by contrast produces a very similar value of the velocity and rate of working for both slender and nonslender swimmers, whether or not the double layer is included, which may be due to the deformation’s ‘locally rigid body’ nature, providing empirical evidence that its neglect may be reasonable in many problems of interest. The inclusion of the double layer enables us to confirm robustly that slenderness provides major advantages in efficient motility despite minimal qualitative changes to the flow field and force distribution.


Author(s):  
Sofiene Amara ◽  
Tiago M. Barbosa ◽  
Yassine Negra ◽  
Raouf Hammami ◽  
Riadh Khalifa ◽  
...  

This study aimed to examine the effect of 9 weeks of concurrent resistance training (CRT) between resistance on dry land (bench press (BP) and medicine ball throw) and resistance in water (water parachute and hand paddles) on muscle strength, sprint swimming performance and kinematic variables compared by the usual training (standard in-water training). Twenty-two male competitive swimmers participated in this study and were randomly allocated to two groups. The CRT group (CRTG, age = 16.5 ± 0.30 years) performed a CRT program, and the control group (CG, age = 16.1 ± 0.32 years) completed their usual training. The independent variables were measured pre- and post-intervention. The findings showed that the one-repetition maximum bench press (1RM BP) was improved only after a CRT program (d = 2.18; +12.11 ± 1.79%). Moreover, all sprint swimming performances were optimized in the CRT group (d = 1.3 to 2.61; −4.22 ± 0.18% to −7.13 ± 0.23%). In addition, the findings revealed an increase in velocity and stroke rate (d = 1.67, d = 2.24; 9.36 ± 2.55%, 13.51 ± 4.22%, respectively) after the CRT program. The CRT program improved the muscle strength, which, in turn, improved the stroke rate, with no change in the stroke length. Then, the improved stroke rate increased the swimming velocity. Ultimately, a faster velocity leads to better swim performances.


Author(s):  
David John Smith ◽  
Meurig Thomas Gallagher ◽  
Rudi Schuech ◽  
Thomas Douglas Montenegro-Johnson

The method of regularized stokeslets is widely-used to model microscale biological propulsion. The method is usually implemented with only the single layer potential, with the double layer potential being neglected, despite this formulation often not being justified a priori due to non-rigid surface deformation. We describe a meshless approach enabling inclusion of the double layer which is applied to several Stokes flow problems in which neglect of the double layer is not strictly valid: the drag on a spherical droplet with partial slip boundary condition, swimming velocity and rate of working of a force-free spherical squirmer, and trajectory, swimmer-generated flow and rate of working of undulatory swimmers of varying slenderness. The resistance problem is solved accurately with modest discretization on a notebook computer with the inclusion of the double layer ranging from no-slip to free slip limits; neglect of the double layer potential results in up to 24% error, confirming the importance of the double layer in applications such as nanofluidics, in which partial slip may occur. The squirming swimmer problem is also solved for both velocity and rate of working to within a few percent error when the double layer potential is included, but the error in the rate of working is above 250% when the double layer is neglected. The undulating swimmer problem by contrast produces a very similar value of the velocity and rate of working for both slender and non-slender swimmers, whether or not the double layer is included, which may be due to the deformation&rsquo;s `locally rigid body&rsquo; nature, providing empirical evidence that its neglect may be reasonable in many problems of interest. Inclusion of the double layer enables us to confirm robustly that slenderness provides major advantages in efficient motility despite minimal qualitative changes to the flow field and force distribution.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2472
Author(s):  
Alessandro Devigili ◽  
Silvia Cattelan ◽  
Clelia Gasparini

There is considerable evidence that female reproductive fluid (FRF) interacts intimately with sperm, affecting several sperm traits, including sperm motility and longevity, and ultimately fertilization success. One of the first documented interactions between FRF and sperm is the ability of FRF to attract and guide sperm towards the eggs. However, most of the evidence of FRF’s chemoattraction proprieties comes from a limited number of taxa, specifically mammals and invertebrate broadcasting spawners. In other species, small FRF volumes and/or short sperm longevity often impose methodological difficulties resulting in this gap in chemoattraction studies in non-model species. One of the outcomes of sperm chemotaxis is sperm accumulation towards high chemoattractant concentrations, which can be easily quantified by measuring sperm concentration. Here, we tested sperm accumulation towards FRF in the zebrafish, Danio rerio, using an ad hoc developed, 3D printed, device (‘sperm selection chamber’). This easy-to-use tool allows to select and collect the sperm that swim towards a chemical gradient, and accumulate in a chemoattractant-filled well thus providing putative evidence for chemoattraction. We found that sperm accumulate in FRF in zebrafish. We also found that none of the sperm quality traits we measured (sperm swimming velocity and trajectory, sperm motility, and longevity) were correlated with this response. Together with the 3D printable project, we provide a detailed protocol for using the selection chamber. The chamber is optimized for the zebrafish, but it can be easily adapted for other species. Our device lays the foundation for a standardized way to measure sperm accumulation and in general chemoattraction, stimulating future research aimed at understanding the role and the mechanisms of sperm chemoattraction by FRF.


Sign in / Sign up

Export Citation Format

Share Document