scholarly journals Quantification of kinetic rate constants for transcytosis of polymeric nanoparticle through blood-brain barrier

2018 ◽  
Vol 1862 (12) ◽  
pp. 2779-2787 ◽  
Author(s):  
Aminul Islam Khan ◽  
Qian Lu ◽  
Dan Du ◽  
Yuehe Lin ◽  
Prashanta Dutta
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Li Lo ◽  
Hua-Ching Lin ◽  
Shu-Ting Hong ◽  
Chih-Hsien Chang ◽  
Chen-Shen Wang ◽  
...  

Abstract Background Brain metastases from non-small cell lung cancer (NSCLC) remain one of the most challenging malignancies. Afatinib (Afa) is an orally administered irreversible ErbB family blocker approved for epidermal growth factor receptor (EGFR)-mutated NSCLC. However, the incidence of brain metastases in patients with NSCLC and EGFR mutation is high. One of the major obstacles in the treatment of brain metastases is to transport drugs across the blood–brain barrier (BBB). A lipid polymeric nanoparticle (LPN) modified with a tight junction-modulating peptide is a potential formulation to deliver therapeutics across the BBB. FD7 and CCD are short peptides that perturb the tight junctions (TJs) of the BBB. In this study, the use of LPN modified with FD7 or CCD as a delivery platform was explored to enhance Afa delivery across the BBB model of mouse brain-derived endothelial bEnd.3 cells. Results Our findings revealed that Afa/LPN-FD7 and Afa/LPN-CCD exhibited a homogeneous shape, a uniform nano-scaled particle size, and a sustained-release profile. FD7, CCD, Afa/LPN-FD7, and Afa/LPN-CCD did not cause a significant cytotoxic effect on bEnd.3 cells. Afa/LPN-FD7 and Afa/LPN-CCD across the bEnd.3 cells enhanced the cytotoxicity of Afa on human lung adenocarcinoma PC9 cells. FD7 and CCD-modulated TJ proteins, such as claudin 5 and ZO-1, reduced transendothelial electrical resistance, and increased the permeability of paracellular markers across the bEnd.3 cells. Afa/LPN-FD7 and Afa/LPN-CCD were also partially transported through clathrin- and caveolae-mediated transcytosis, revealing the effective activation of paracellular and transcellular pathways to facilitate Afa delivery across the BBB and cytotoxicity of Afa on PC9 cells. Conclusion TJ-modulating peptide-modified LPN could be a prospective platform for the delivery of chemotherapeutics across the BBB to the brain for the potential treatment of the BM of NSCLC.


1987 ◽  
Vol 252 (3) ◽  
pp. E299-E303 ◽  
Author(s):  
H. Namba ◽  
G. Lucignani ◽  
A. Nehlig ◽  
C. Patlak ◽  
K. Pettigrew ◽  
...  

The effects of insulin on 3-O-[14C]methylglucose transport across the blood-brain barrier (BBB) were studied in conscious rats under steady-state normoglycemic conditions. The [14C]methylglucose was infused intravenously at a constant rate, and animals were killed at various times between 5 and 30 min after the initiation of the infusion. The time course of the arterial plasma concentration of [14C]methylglucose was determined in timed arterial blood samples taken during the infusion. Local cerebral tissue concentrations of [14C]methylglucose at the time of killing were determined by quantitative autoradiography of brain sections. The rate constants for inward and outward transport of [14C]methylglucose across the BBB, K1, and k2, respectively, were estimated by a least-squares, best-fit of a kinetic equation to the measured time courses of plasma and tissue concentrations. K1 and k2 were reduced by an average of 24 and 31%, respectively, in gray matter and 7 and 16% in white matter from values estimated similarly in normal insulinemic control rats. The equilibrium distribution ratio, K1/k2, for [14C]methylglucose in brain increased by approximately 10–11% in the hyperinsulinemic animals. Because 3-O-[14C]methylglucose shares the same carrier that transports glucose and other hexoses across the BBB, these results suggest that hyperinsulinemia decreases the rate constants for transport but increases the distribution space for hexoses in brain. These effects are, however, quite small and are probably minor or negligible when compared with the major effects of insulin in other tissues.


1995 ◽  
Author(s):  
Thomas P. Davis ◽  
Thomas J. Abbruscato ◽  
Elizabeth Brownson ◽  
Victor J. Hruby

Sign in / Sign up

Export Citation Format

Share Document