Low concentrations of reactive γ-ketoaldehydes prime thromboxane-dependent human platelet aggregation via p38-MAPK activation

Author(s):  
Nathalie Bernoud-Hubac ◽  
Denise Al Alam ◽  
Jennifer Lefils ◽  
Sean S. Davies ◽  
Venkataraman Amarnath ◽  
...  
1985 ◽  
Vol 54 (03) ◽  
pp. 717-720 ◽  
Author(s):  
Yu-An Ding ◽  
D Euan MacIntyre ◽  
Christopher J Kenyon ◽  
Peter F Semple

SummaryThe effects of angiotensin II (ANG II) alone and in combination with other agonists on human platelet aggregation, thromboxane B2 (TxB2) and cytosolic [Ca2+]i were investigated. ANG II (10™11 - 10™7 M) alone had no direct effect on aggregation, TxB2 production or [Ca2+]i after short- (<2 min) or longterm (30 min) incubation. In contrast, low concentrations of ANG II (10™11 M) enhanced adrenaline-induced platelet aggregation but high concentrations (10™7 M) had an inhibitory effect. Moreover, ANG II (10™11 - 10™7 M) augmented platelet responses to the TxA2 mimetic, U44069. Pretreatment of platelets with flurbiprofen abolished this facilitatory effect of ANG II on adrenaline- but not on U44069-induced platelet aggregation. These results suggest that ANG II stimulation of agonist-induced platelet activation may be due to potentiation of the effects rather than the synthesis of TxA2


1985 ◽  
Vol 53 (02) ◽  
pp. 221-224 ◽  
Author(s):  
Marco Cattaneo ◽  
Maria Teresa Canciani ◽  
Pier Mannuccio Mannucci

SummaryThe effects of the cyclo-oxygenase inhibition on PAF-acether- induced human platelet aggregation and secretion are controversial. We studied the above parameters on citrated platelet-rich plasma of 12 normal subjects before and after the in vivo administration of acetylsalicylic acid (ASA). Individual sensitivities to PAF-acether were highly variable. ASA completely inhibited the platelet secretion induced by low concentrations of PAF-acether, but caused only partial inhibition when platelets were exposed to high concentrations of PAF-acether. The concentration of PAF-acether which overcame the cyclo-oxygenase inhibition varied substantially, depending on the individual sensitivity of the platelets to it. The addition of CaCl2 2 mM to the samples did not affect the extent of the platelet secretion, but increased irreversible aggregation in samples taken both before and after the ASA administration. These data suggest that low concentrations of PAF-acether stimulate the human platelet secretion by activating the cyclo-oxygenase pathway, whereas higher concentrations also trigger other mechanism(s) that suffice to induce human platelet secretion and full aggregation.


1979 ◽  
Author(s):  
D.E. MacIntyre ◽  
E.W. Salzman

11-Deoxy and/or 15 or 16 alkyl substitution confer platelet aggregating activity to bis-enoic PG's: e.g., 11-deoxy-PGE2 (threshold (T)-5μM); ll-deoxy-15(S)-15-methyl-PGE2 (T=0.1μM);ll-deoxy-15(S)-16-methyl-PGE2(T=0.1μM). Responses induced by such PG’s mimic those induced by PGH2 and PGH2 analogues (e.g., U44069). N0164 competitively inhibits aggregation induced by PG’s and suppresses “secondary” responses induced by low concentrations of ADP or arachidonic acid, suggesting involvement of a specific PG stimulatory receptor in platelet aggregation. We compared non-aggregatory PG’s as inhibitors of pri mary aggregation induced by ADP or U44069. PG’s containing 11-deoxy and/or 16-alkyl groups selectively inhibited aggregation induced by U44069. Mean I50 values (n-4) against ADP and U44069 respectively were PGA2 (>100μM; 0.3μM); PGB2 (>100μM; 5μM); PGD2 (6nM; 2nM); PGE1(10nM; 5nM); 11-deoxy PGE1 (60μM; 2μM); ll-deoxy-15-(R)-16-methyl (100μM; 2μM); 13,14-dihydro-16-methyl-PGE2 methyl ester(750nM; 15nM). A low ADP: 406 I50 ratio (e.g., PGD2) indicates that inhibition is mainly due to adenylate cyclase stim ulation, and a high ratio (e.g., PGA2) that inhibition is mainly due to PG receptor antagonism. We have demonstrated a PG stimulatory receptor on the platelet, and its involvement in “secondary” aggregation. PG’s inhibit aggregation by combining with this receptor and/or by stimulating adenylate cyclase.


1997 ◽  
Vol 325 (2) ◽  
pp. 495-500 ◽  
Author(s):  
Catherine CALZADA ◽  
Evelyne VERICEL ◽  
Michel LAGARDE

There is mounting evidence that lipid peroxides contribute to pathophysiological processes and can modulate cellular functions. The aim of the present study was to investigate the effects of lipid hydroperoxides on platelet aggregation and arachidonic acid (AA) metabolism. Human platelets, isolated from plasma, were incubated with subthreshold (i.e. non-aggregating) concentrations of AA in the absence or presence of hydroperoxyeicosatetraenoic acids (HPETEs). Although HPETEs alone had no effect on platelet function, HPETEs induced the aggregation of platelets co-incubated with non-aggregating concentrations of AA, HPETEs being more potent than non-eicosanoid peroxides. The priming effect of HPETEs on platelet aggregation was associated with an increased formation of cyclo-oxygenase metabolites, in particular thromboxane A2, and was abolished by aspirin, suggesting an activation of cyclo-oxygenase by HPETEs. It was not receptor-mediated because the 12-HPETE-induced enhancement of AA metabolism was sustained in the presence of SQ29,548 or RGDS, which blocked the aggregation. These results indicate that physiologically relevant concentrations of HPETEs potentiate platelet aggregation, which appears to be mediated via a stimulation of cyclo-oxygenase activity.


1979 ◽  
Author(s):  
D. E. Macfarlane ◽  
E. W. Salzman

11-Deoxy and/or 15 or 16 alkyl substitution confer platelet aggregating activity to bis-enoic PG’s: e.g., ll-deoxy-PGE2(threshold (T)-5μM); ll-deoxy-15(S)-15-methyl-PGE2(T= O.lμM); ll-deoxy-15(S)-16-methyl-PGE2(T=0.1μM). Responses induced by such PG’s mimic those induced by PGH2 and PGH2 analogues (e.g., U44069). N0164 competitively inhibits aggregation induced by PG’s and suppresses “secondary” responses induced by low concentrations of ADP or arachidonic acid, suggesting involvement of a specific PG stimulatory receptor in platelet aggregation. We compared non-aggregatory PG’s as inhibitors of primary aggregation induced by ADP or U44069. PG’s containing 11-deoxy and/or 16-alkyl groups selectively inhibited aggregation induced by U44069. Mean I50 values (n=4) against ADP and U44069 respectively were PGA2(>100μM; 0.3μM); PGB2(>100μM; 5μM). PGE1(60μM; 2μM); PGE1(10nM; 5nM); 11-deoxy PGEX (60μM; 2μM); ll-deoxy-15-(R)-16-methyl PGE1(lOOμM; 2μM); 13,14-dihydro-16-methyl-PGE2 methyl ester (750nM; 15nM). A low ADP: U4406 I50 ratio (e.g., PGD2) indicates that inhibition is mainly due to adenylate cyclase stim ulation, and a high ratio (e.g., PGA2) that inhibition is mainly due to PG receptor antagonism. We have demonstrated a PG stimulatory receptor on the platelet, and its involvement in “secondary”aggregation. PG’s inhibit aggregation by combining with this receptor and/or by stimulating adenylate cyclase.


1992 ◽  
Vol 70 (7) ◽  
pp. 802-806 ◽  
Author(s):  
Yuliy Y. Chirkov ◽  
Jurate I. Naujalis ◽  
Sylvia Barber ◽  
R.Edward Sage ◽  
David W. Gove ◽  
...  

1993 ◽  
Vol 70 (05) ◽  
pp. 834-837 ◽  
Author(s):  
Akira Suehiro ◽  
Yoshio Oura ◽  
Motoo Ueda ◽  
Eizo Kakishita

SummaryWe investigated the effect of staphylokinase (SAK), which has specific thrombolytic properties, on human platelet aggregation. Platelet aggregation induced with collagen was observed following preincubation of platelets in platelet-rich plasma (PRP) or washed platelet suspension (WP) with SAK at 37° C for 30 min. SAK inhibited platelet aggregation in PRP only at the highest examined concentration (1 x 10-4 g/ml). Although SAK did not inhibit platelet aggregation in WP which contained fibrinogen, it did when the platelets had been preincubated with SAK and plasminogen. The most effective concentration in WP was 1 x 10-6 g/ml. The effect could be inhibited by adding aprotinin or α2-antiplasmin. The highest generation of plasmin in the same preincubation fluid was detected at 1 x 10-6 g/ml SAK. We concluded that SAK can inhibit platelet aggregation in WP by generating plasmin and/or fibrinogen degradation products, but is only partially effective in PRP because of the existence of α2-antiplasmin.


1989 ◽  
Vol 62 (03) ◽  
pp. 955-961 ◽  
Author(s):  
Ian S Watts ◽  
Rebecca J Keery ◽  
Philip Lumley

SummaryWe have investigated the effect of two procedures that modify human platelet surface membrane glycoprotein (Gp) IIb and IIIa complexes upon whole blood platelet aggregation to a range of agonists. (A) Irreversible disruption of complexes by temporary (30 min) Ca2+-deprivation with EGTA at 37° C. (B) Binding of a monoclonal antibody M148 to the complex. EGTA exposure abolished aggregation to ADP, adrenaline and PAF. In contrast, full aggregation curves to collagen and U-46619 could still be established. EGTA exposure reduced M148 binding to platelets by 80%. Excess M148 abolished aggregation to ADP, PAF, collagen and U-46619. However, upon removal of unbound antibody from platelets full aggregation curves to collagen and U-46619 but not to ADP and PAF could be re-established. Thus human platelet aggregation to ADP, PAF and adrenaline appears absolutely dependent upon surface membrane GpIIb/IIIa complexes. In contrast, collagen and U-46619 cause expression of an additional distinct pool of Gp complexes inaccessible to EGTA and M148 in unstimulated platelets which is intimately involved in aggregation to these agonists.


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


Sign in / Sign up

Export Citation Format

Share Document