scholarly journals Annexin A2 is involved in Ca 2+ -dependent plasma membrane repair in primary human endothelial cells

2017 ◽  
Vol 1864 (6) ◽  
pp. 1046-1053 ◽  
Author(s):  
Sophia Nina Koerdt ◽  
Volker Gerke
2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Steven J. Foltz ◽  
Yuan Yuan Cui ◽  
Hyojung J. Choo ◽  
H. Criss Hartzell

Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.


2016 ◽  
Vol 213 (6) ◽  
pp. 613-615 ◽  
Author(s):  
Camilla Raiborg ◽  
Harald Stenmark

Lysosomes fuse with the plasma membrane to help repair membrane lesions, but how they are positioned close to these lesions is not fully understood. Now, Encarnação et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201511093) demonstrate that the lysosomal GTPase Rab3a and its effectors orchestrate lysosome positioning and plasma membrane repair.


2020 ◽  
Vol 219 (5) ◽  
Author(s):  
Adam Horn ◽  
Shreya Raavicharla ◽  
Sonna Shah ◽  
Dan Cox ◽  
Jyoti K. Jaiswal

Plasma membrane injury can cause lethal influx of calcium, but cells survive by mounting a polarized repair response targeted to the wound site. Mitochondrial signaling within seconds after injury enables this response. However, as mitochondria are distributed throughout the cell in an interconnected network, it is unclear how they generate a spatially restricted signal to repair the plasma membrane wound. Here we show that calcium influx and Drp1-mediated, rapid mitochondrial fission at the injury site help polarize the repair response. Fission of injury-proximal mitochondria allows for greater amplitude and duration of calcium increase in these mitochondria, allowing them to generate local redox signaling required for plasma membrane repair. Drp1 knockout cells and patient cells lacking the Drp1 adaptor protein MiD49 fail to undergo injury-triggered mitochondrial fission, preventing polarized mitochondrial calcium increase and plasma membrane repair. Although mitochondrial fission is considered to be an indicator of cell damage and death, our findings identify that mitochondrial fission generates localized signaling required for cell survival.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stine Lauritzen Sønder ◽  
Theresa Louise Boye ◽  
Regine Tölle ◽  
Jörn Dengjel ◽  
Kenji Maeda ◽  
...  

2011 ◽  
Vol 81 (6) ◽  
pp. 703-712 ◽  
Author(s):  
Annette Draeger ◽  
Katia Monastyrskaya ◽  
Eduard B. Babiychuk

2016 ◽  
Vol 213 (7) ◽  
pp. 2137OIA58 ◽  
Author(s):  
Alexis R. Demonbreun ◽  
Mattia Quattrocelli ◽  
David Y. Barefield ◽  
Madison V. Allen ◽  
Kaitlin E. Swanson ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Goutam Chandra ◽  
Aurelia Defour ◽  
Kamel Mamchoui ◽  
Kalpana Pandey ◽  
Soumya Mishra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document