plasma membrane repair
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 31)

H-INDEX

31
(FIVE YEARS 4)

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1522
Author(s):  
Jianxun Yi ◽  
Ang Li ◽  
Xuejun Li ◽  
Kiho Park ◽  
Xinyu Zhou ◽  
...  

Respiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological events in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.


2021 ◽  
Author(s):  
Cristina Escrevente ◽  
Liliana Bento-Lopes ◽  
José S. Ramalho ◽  
Duarte C. Barral

Lysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair. Nevertheless, the molecular machinery involved in this process is poorly understood. Here, we identify Rab11a and Rab11b as regulators of calcium-induced lysosome exocytosis. Interestingly, Rab11-positive vesicles transiently interact with lysosomes at the cell periphery, indicating that this interaction is required for the last steps of lysosome exocytosis. Additionally, we found that the silencing of the exocyst subunit Sec15, a Rab11 effector, impairs lysosome exocytosis, suggesting that Sec15 acts together with Rab11 in the regulation of lysosome exocytosis. Furthermore, we show that Rab11 binds the guanine nucleotide exchange factor for Rab3a (GRAB) and also Rab3a, which we described previously as a regulator of the positioning and exocytosis of lysosomes. Thus, our study identifies new players required for lysosome exocytosis and suggest the existence of a Rab11-Rab3a cascade involved in this process.


2021 ◽  
Author(s):  
Jianxun Yi ◽  
Ang Li ◽  
Xuejun Li ◽  
Ki Ho Park ◽  
Xinyu Zhou ◽  
...  

AbstractRespiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological findings in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein (rhMG53) in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.


2021 ◽  
Author(s):  
Guillermo S Moreno-Pescador ◽  
Dunya S Aswad ◽  
Christoffer D Florentsen ◽  
Azra Bahadori ◽  
Mohammad R Arastoo ◽  
...  

Maintaining the integrity of the cell plasma membrane (PM) is critical for the survival of cells. While an efficient PM repair machinery can aid survival of healthy cells by preventing influx of extracellular calcium, it can also constitute an obstacle in drug delivery and photothermal therapy. We show how nanoscopic holes can be applied to the cell surface thus allowing identification of molecular components with a pivotal role in PM repair. Cells are punctured by locally heating gold nanostructures at the cell surface which causes nano-ruptures in cellular PMs. Recruitment of annexin V near the hole is found to locally reshape the ruptured plasma membrane. Experiments using model membranes, containing recombinant annexin V, provide further biophysical insight into the ability of annexin V to reshape edges surrounding a membrane hole. The thermoplasmonic method provides a general strategy to monitor the response to nanoscopic injuries to the cell surface.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Goutam Chandra ◽  
Sen Chandra Sreetama ◽  
Davi A.G. Mázala ◽  
Karine Charton ◽  
Jack H. VanderMeulen ◽  
...  

Of the many crucial functions of the ER, homeostasis of physiological calcium increase is critical for signaling. Plasma membrane (PM) injury causes a pathological calcium influx. Here, we show that the ER helps clear this surge in cytoplasmic calcium through an ER-resident calcium pump, SERCA, and a calcium-activated ion channel, Anoctamin 5 (ANO5). SERCA imports calcium into the ER, and ANO5 supports this by maintaining electroneutrality of the ER lumen through anion import. Preventing either of these transporter activities causes cytosolic calcium overload and disrupts PM repair (PMR). ANO5 deficit in limb girdle muscular dystrophy 2L (LGMD2L) patient cells compromises their cytosolic and ER calcium homeostasis. By generating a mouse model of LGMD2L, we find that PM injury causes cytosolic calcium overload and compromises the ability of ANO5-deficient myofibers to repair. Addressing calcium overload in ANO5-deficient myofibers enables them to repair, supporting the requirement of the ER in calcium homeostasis in injured cells and facilitating PMR.


2021 ◽  
Author(s):  
Cristina Escrevente ◽  
Liliana Bento-Lopes ◽  
José S Ramalho ◽  
Duarte C Barral

AbstractLysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair. Nevertheless, the molecular machinery involved in this process is poorly understood.Here, we identify Rab11a and Rab11b as regulators of calcium-induced lysosome exocytosis. Interestingly, Rab11-positive vesicles transiently interact with lysosomes at the cell periphery, indicating that this interaction is required for the last steps of lysosome exocytosis. Additionally, we found that the silencing of the exocyst subunit Sec15, a Rab11 effector, impairs lysosome exocytosis independently of the exocyst complex, suggesting that Sec15 acts together with Rab11 in the regulation of lysosome exocytosis. Furthermore, we show that Rab11 binds the guanine nucleotide exchange factor for Rab3a (GRAB) and also Rab3a, which we described previously as a regulator of the positioning and exocytosis of lysosomes.Thus, our studies suggest that Rab11-positive vesicles transport GRAB to activate Rab3a on lysosomes, establishing a Rab11-Rab3 cascade that is essential for lysosome exocytosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin Berg Klenow ◽  
Anne Sofie Busk Heitmann ◽  
Jesper Nylandsted ◽  
Adam Cohen Simonsen

AbstractPlasma membrane repair is essential for eukaryotic cell life and is triggered by the influx of calcium through membrane wounds. Repair consists of sequential steps, with closure of the membrane hole being the key event that allows the cell to recover, thus identifying the kinetics of hole closure as important for clarifying repair mechanisms and as a quantitative handle on repair efficiency. We implement calcium imaging in MCF7 breast carcinoma cells subject to laser damage, coupled with a model describing the spatio-temporal calcium distribution. The model identifies the time point of hole closure as the time of maximum calcium signal. Analysis of cell data estimates the closure time as: $$\langle t_c \rangle =5.45\pm 2.25$$ ⟨ t c ⟩ = 5.45 ± 2.25 s and $$\langle t_c \rangle =6.81\pm 4.69$$ ⟨ t c ⟩ = 6.81 ± 4.69 s using GCaMP6s-CAAX and GCaMP6s probes respectively. The timescale was confirmed by independent time-lapse imaging of a hole during sealing. Moreover, the analysis estimates the characteristic time scale of calcium removal, the penetration depth of the calcium wave and the diffusion coefficient. Probing of hole closure times emerges as a strong universal tool for quantification of plasma membrane repair


2021 ◽  
Vol 120 (3) ◽  
pp. 45a
Author(s):  
Guillermo S. Moreno Pescador ◽  
Dunya S. Asward ◽  
Mohammad Reza Arastoo ◽  
Helena M. Dávidsdóttir Danielsen ◽  
Christoffer D. Florentsen ◽  
...  

2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Steven J. Foltz ◽  
Yuan Yuan Cui ◽  
Hyojung J. Choo ◽  
H. Criss Hartzell

Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.


2021 ◽  
Vol 478 (1) ◽  
pp. 197-215 ◽  
Author(s):  
Yuning Wang ◽  
Roya Tadayon ◽  
Liliana Santamaria ◽  
Pascal Mercier ◽  
Chantal J. Forristal ◽  
...  

The membrane protein dysferlin (DYSF) is important for calcium-activated plasma membrane repair, especially in muscle fibre cells. Nearly 600 mutations in the DYSF gene have been identified that are causative for rare genetic forms of muscular dystrophy. The dysferlin protein consists of seven C2 domains (C2A–C2G, 13%–33% identity) used to recruit calcium ions and traffic accessory proteins and vesicles to injured membrane sites needed to reseal a wound. Amongst these, the C2A is the most prominent facilitating the calcium-sensitive interaction with membrane surfaces. In this work, we determined the calcium-free and calcium-bound structures of the dysferlin C2A domain using NMR spectroscopy and X-ray crystallography. We show that binding two calcium ions to this domain reduces the flexibility of the Ca2+-binding loops in the structure. Furthermore, calcium titration and mutagenesis experiments reveal the tight coupling of these calcium-binding sites whereby the elimination of one site abolishes calcium binding to its partner site. We propose that the electrostatic potential distributed by the flexible, negatively charged calcium-binding loops in the dysferlin C2A domain control first contact with calcium that promotes subsequent binding. Based on these results, we hypothesize that dysferlin uses a ‘calcium-catching’ mechanism to respond to calcium influx during membrane repair.


Sign in / Sign up

Export Citation Format

Share Document