scholarly journals Comparison between mouse and sea urchin orthologs of voltage-gated proton channel suggests role of S3 segment in activation gating

2016 ◽  
Vol 1858 (12) ◽  
pp. 2972-2983 ◽  
Author(s):  
Souhei Sakata ◽  
Nana Miyawaki ◽  
Thomas J. McCormack ◽  
Hiroki Arima ◽  
Akira Kawanabe ◽  
...  
2002 ◽  
Vol 8 (2) ◽  
pp. 79-85 ◽  
Author(s):  
P. T. Huang ◽  
T. Y. Chen ◽  
L. J. Tseng ◽  
K. L. Lou ◽  
H. H. Liou ◽  
...  

2014 ◽  
Vol 106 (2) ◽  
pp. 233a
Author(s):  
Laetitia Mony ◽  
Thomas K. Berger ◽  
Ehud Y. Isacoff

2018 ◽  
Vol 293 (37) ◽  
pp. 14444-14454 ◽  
Author(s):  
Edgar Garza-Lopez ◽  
Josue A. Lopez ◽  
Jussara Hagen ◽  
Ruth Sheffer ◽  
Vardiella Meiner ◽  
...  
Keyword(s):  

2008 ◽  
Vol 294 (3) ◽  
pp. H1183-H1187 ◽  
Author(s):  
Kristen M. Park ◽  
Mario Trucillo ◽  
Nicolas Serban ◽  
Richard A. Cohen ◽  
Victoria M. Bolotina

Store-operated channels (SOC) and store-operated Ca2+ entry are known to play a major role in agonist-induced constriction of smooth muscle cells (SMC) in conduit vessels. In microvessels the role of SOC remains uncertain, in as much as voltage-gated L-type Ca2+ (CaL2+) channels are thought to be fully responsible for agonist-induced Ca2+ influx and vasoconstriction. We present evidence that SOC and their activation via a Ca2+-independent phospholipase A2 (iPLA2)-mediated pathway play a crucial role in agonist-induced constriction of cerebral, mesenteric, and carotid arteries. Intracellular Ca2+ in SMC and intraluminal diameter were measured simultaneously in intact pressurized vessels in vitro. We demonstrated that 1) Ca2+ and contractile responses to phenylephrine (PE) in cerebral and carotid arteries were equally abolished by nimodipine (a CaL2+ inhibitor) and 2-aminoethyl diphenylborinate (an inhibitor of SOC), suggesting that SOC and CaL2+ channels may be involved in agonist-induced constriction of cerebral arteries, and 2) functional inhibition of iPLA2β totally inhibited PE-induced Ca2+ influx and constriction in cerebral, mesenteric, and carotid arteries, whereas K+-induced Ca2+ influx and vasoconstriction mediated by CaL2+ channels were not affected. Thus iPLA2-dependent activation of SOC is crucial for agonist-induced Ca2+ influx and vasoconstriction in cerebral, mesenteric, and carotid arteries. We propose that, on PE-induced depletion of Ca2+ stores, nonselective SOC are activated via an iPLA2-dependent pathway and may produce a depolarization of SMC, which could trigger a secondary activation of CaL2+ channels and lead to Ca2+ entry and vasoconstriction.


2009 ◽  
Vol 65 ◽  
pp. S73
Author(s):  
Yoshifumi Okochi ◽  
Mari Sasaki ◽  
Yasushi Okamura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document