secondary activation
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Joshua I Gray ◽  
Shaima Al-Khabouri ◽  
Fraser Morton ◽  
Eric T Clambey ◽  
Laurent Gapin ◽  
...  

AbstractMemory T cells respond rapidly in part because they are less reliant on heightened levels of costimulatory molecules. This presents challenges to silencing memory T cells in tolerance strategies for autoimmunity or allergy. We find that memory CD4 T cells generated by infection or immunisation survive secondary activation with antigen delivered without adjuvant, regardless of their location in secondary lymphoid organs or peripheral tissues. These cells were, however, functionally altered following a tertiary immunisation with antigen and adjuvant, proliferating poorly but maintaining their ability to produce inflammatory cytokines. Transcriptional and cell cycle analysis of these memory CD4 T cells suggest they are unable to commit fully to cell division potentially because of low expression of DNA repair enzymes. In contrast, these memory CD4 T cells could proliferate following tertiary reactivation by viral re-infection. These data suggest that tolerance induction in memory CD4 T cells is partial and can be reversed.


2019 ◽  
Vol 152 (1) ◽  
Author(s):  
Donald W. Hilgemann

All cells must control the activities of their ion channels and transporters to maintain physiologically appropriate gradients of solutes and ions. The complexity of underlying regulatory mechanisms is staggering, as exemplified by insulin regulation of transporter trafficking. Simpler strategies occur in single-cell organisms, where subsets of transporters act as solute sensors to regulate expression of their active homologues. This Viewpoint highlights still simpler mechanisms by which Na transporters use their own transport sites as sensors for regulation. The underlying principle is inherent to Na/K pumps in which aspartate phosphorylation and dephosphorylation are controlled by occupation of transport sites for Na and K, respectively. By this same principle, Na binding to transport sites can control intrinsic inactivation reactions that are in turn modified by extrinsic signaling factors. Cardiac Na/Ca exchangers (NCX1s) and Na/K pumps are the best examples. Inactivation of NCX1 occurs when cytoplasmic Na sites are fully occupied and is regulated by lipid signaling. Inactivation of cardiac Na/K pumps occurs when cytoplasmic Na-binding sites are not fully occupied, and inactivation is in turn regulated by Ca signaling. Potentially, Na/H exchangers (NHEs) and epithelial Na channels (ENaCs) are regulated similarly. Extracellular protons and cytoplasmic Na ions oppose secondary activation of NHEs by cytoplasmic protons. ENaCs undergo inactivation as cytoplasmic Na rises, and small diffusible molecules of an unidentified nature are likely involved. Multiple other ion channels have recently been shown to be regulated by transiting ions, thereby underscoring that ion permeation and channel gating need not be independent processes.


2018 ◽  
Vol 20 (3) ◽  
pp. 87-94
Author(s):  
Michal Zgrzebnicki ◽  
Ewa Michalczyszyn ◽  
Rafal J. Wrobel

Abstract Secondary activation of commercial activated carbon (AC) ORGANOSORB 10-CO was carried out at 600, 700 and 800oC with mass ratios of potassium to AC (K/AC) in range 1-3. Crucial samples have shown following CO2 uptakes and SSA - 3.90 mmol/g and 1225 m2/g, 4.54 mmol/g and 1546 m2/g, 4.28 and 1717 m2/g for pristine material and samples obtained at 700oC with K/AC = 2 and at 800oC with K/AC = 3 respectively. Last sample also indicated signifi cant mesopore volume increase in diameter range 2-5 nm, from 0.11 to 0.24 cm3/g. CO2 uptake increase was explained by formation of micropores up to diameter of 0.8 nm, which distribution was established from CO2 sorption using DFT. Surface chemistry of all samples has not changed during modifi cation, what was proven by XPS. Moreover, deeper incorporation of potassium ions into graphite at higher temperatures was observed as confi rmed with EDS, XPS and XRD.


Platelets ◽  
2015 ◽  
Vol 27 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Anna L. Södergren ◽  
Ann-Charlotte B. Svensson Holm ◽  
Sofia Ramström ◽  
Eva G. Lindström ◽  
Magnus Grenegård ◽  
...  

2013 ◽  
Vol 4 (11) ◽  
pp. e905-e905 ◽  
Author(s):  
L Xu ◽  
J-M Feng ◽  
J-X Li ◽  
J-M Zhu ◽  
S-S Song ◽  
...  

2012 ◽  
Vol 140 (4) ◽  
pp. 391-402 ◽  
Author(s):  
Stefan Dürrnagel ◽  
Björn H. Falkenburger ◽  
Stefan Gründer

Degenerin/epithelial Na+ channels (DEG/ENaCs) are Na+ channels that are blocked by the diuretic amiloride. In general, they are impermeable for Ca2+ or have a very low permeability for Ca2+. We describe here, however, that a DEG/ENaC from the cnidarian Hydra magnipapillata, the Hydra Na+ channel (HyNaC), is highly permeable for Ca2+ (PCa/PNa = 3.8). HyNaC is directly gated by Hydra neuropeptides, and in Xenopus laevis oocytes expressing HyNaCs, RFamides elicit currents with biphasic kinetics, with a fast transient component and a slower sustained component. Although it was previously reported that the sustained component is unselective for monovalent cations, the selectivity of the transient component had remained unknown. Here, we show that the transient current component arises from secondary activation of the Ca2+-activated Cl− channel (CaCC) of Xenopus oocytes. Inhibiting the activation of the CaCC leads to a simple on–off response of peptide-activated currents with no apparent desensitization. In addition, we identify a conserved ring of negative charges at the outer entrance of the HyNaC pore that is crucial for the high Ca2+ permeability, presumably by attracting divalent cations to the pore. At more positive membrane potentials, the binding of Ca2+ to the ring of negative charges increasingly blocks HyNaC currents. Thus, HyNaC is the first member of the DEG/ENaC gene family with a high Ca2+ permeability.


Sign in / Sign up

Export Citation Format

Share Document