scholarly journals Role of a conserved glutamine in the function of voltage-gated Ca2+ channels revealed by a mutation in human CACNA1D

2018 ◽  
Vol 293 (37) ◽  
pp. 14444-14454 ◽  
Author(s):  
Edgar Garza-Lopez ◽  
Josue A. Lopez ◽  
Jussara Hagen ◽  
Ruth Sheffer ◽  
Vardiella Meiner ◽  
...  
Keyword(s):  
2017 ◽  
Author(s):  
◽  
Kim Hung Thien To

Lymphatic smooth muscle (LSM) contracts spontaneously, actively returning interstitial fluid through a network of lymphatic capillaries and collecting lymphatic vessels to the great veins. Dysfunctional lymphatic contractions can impair lymph transport in lymphatic-related diseases such as lymphedema. Understanding the pacemaking mechanism of LSM that underlies active lymph transport is essential for therapeutic targeting of lymphedema. Based on experiments using pharmacological inhibitors, current literature posits that T-type voltage-gated Ca2+ channels (T-channels) play a role in controlling the pacing of lymphatic contractions, i.e., the contraction frequency, while Ltype voltage-gated Ca2+ channels (L-channels) play a role in controlling the strength of lymphatic contractions, i.e., the contraction amplitude. However, non-specific effects of currently available T-channel inhibitors, especially on L-channels, can confound the understanding of T-channel role in lymphatic pacemaking. Therefore, using transgenic mouse models as an alternative approach to test the role of T-channels, I hypothesized that genetic deletion of T-type Ca2+ channels would decrease the frequency of lymphatic contractions but not the amplitude. First, I tested for the presence of T-channels in lymphatic vessels from both rat and mouse, and then more specifically in isolated single mouse LSM cells; second, I tested the effects of commonly-used T-channel inhibitors on lymphatic pacemaking and/or contraction in both rat and mouse vessels; and finally, I investigated the effect of genetic deletion of specific T-channel isoforms in mice on lymphatic pacemaking and contraction strength. First, RT-PCR and immunostaining were performed on whole lymphatic vessels to test for the expression of T-channels at mRNA and protein levels. Rat mesenteric lymphatics, mouse popliteal lymphatic vessels (PLs) and mouse inguinal-axillary lymphatic vessels (IALs) showed the mRNA expression of Cav3.1 and 3.2, two of the three isoforms of T-channels, along with Cav1.2, the isoform of the L-channel prevalent in cardiac muscle and blood vessels. Likewise, in LSM cells isolated from mouse PLs and IALs, RT-PCR revealed the expression of Cav3.1 and 3.2. In mouse IALs, immunostaining consistently revealed the protein expression of T-channel isoforms Cav3.1 and 3.2 along with L-channel isoform Cav1.2 colocalized with the smooth-muscle a-actin (i.e., in LSM cells). Moreover, patch-clamp recordings in single LSM cells isolated from rat mesenteric, mouse PLs and IALs showed functional evidence of current through voltage-gated Ca2+ channels that was blocked by 1[mu]M nifedipine, an L-channel inhibitor, along with a persistent nifedipine-insensitive current that had fast kinetics and was blocked by 1mM Ni2+, a frequently used T-channel inhibitor. Second, pharmacological inhibitors were tested on isolated, cannulated and pressurized ex vivo lymphatic vessels from rat and mouse. Consistent with the findings of Lee et al. (2014) on rat mesenteric lymphatics, mibefradil, another conventional T-channel inhibitor, inhibited the contraction frequency (IC50=66nM) at a lower dose than that required to inhibit contraction amplitude (IC50=423nM). However, in contrast to their findings, treatment of rat mesenteric lymphatics with Ni2+ inhibited both amplitude and frequency at similar doses (IC50=248µM and 279[mu]M, respectively). In wild-type (WT) mouse IALs and PLs, increasing doses of Ni2+ progressively reduced contraction amplitude (IC50=66[mu]M and 110[mu]M, respectively), while leaving the frequency unchanged until the contractions were completely inhibited. In WT PLs, TTA-A2, a more recently developed T-channel inhibitor, had only a modest effect on contraction amplitude (IC50=1.3[mu]M) without changing the contraction frequency. Similarly, treatment with nifedipine, a specific L-channel inhibitor, gradually attenuated contraction amplitude (IC50=43.3nM), suggesting that the effect on amplitude of T-channel inhibitors Ni2+ and TTA-A2 could be due to off-target effects on L-channels. Having established that pharmacologic inhibition of T-channels in this context is unreliable, I turned to genetic methods allowing deletion of specific T and L-channel isoforms. Surprisingly, smooth muscle-specific deletion of Cav1.2 (L-channels) rendered PLs and IALs quiescent without spontaneous lymphatic contractions, suggesting their potential contribution to both lymphatic frequency and contraction strength; no residual contractions were mediated by T-channels. In Cav3.1-null mice and Cav3.2-null mice, IALs exhibited no significant differences in functional contractile parameters (including frequency and amplitude) compared to WT vessels over a wide range of pressures. Likewise, PLs from Cav3.1-/- mice exhibited no significant defects in the contractile response to pressure, to the L-channel inhibitor nifedipine, or even to the endothelialdependent inhibitor acetylcholine. These findings conflict with the currently established view that T-channels regulate the frequency of lymphatic pacemaking and that L-channels contribute only to the contraction strength. In summary, I confirmed the functional expression of T-channels in both rat and mouse LSM, but selective genetic deletion of either Cav3.1 or Cav3.2 T-channel isoforms did not produce a measurable functional defect in lymphatic vessel pacemaking or contraction. My findings conflict with the current established view that T-channels control lymphatic pacemaking and L-channels determine lymphatic contraction strength; a definitive role for T-channels in LSM function remains unknown.


2012 ◽  
Vol 9 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Sérgio José Macedo-Junior ◽  
Francisney Pinto Nascimento ◽  
Murilo Luiz-Cerutti ◽  
Adair Roberto Soares Santos

2015 ◽  
Vol 6 ◽  
Author(s):  
Pietro Mesirca ◽  
Angelo G. Torrente ◽  
Matteo E. Mangoni

2013 ◽  
Vol 9 ◽  
pp. 1744-8069-9-15 ◽  
Author(s):  
Aihua Qian ◽  
Dandan Song ◽  
Yong Li ◽  
Xinqiu Liu ◽  
Dong Tang ◽  
...  

1993 ◽  
Vol 265 (5) ◽  
pp. F677-F685 ◽  
Author(s):  
P. K. Carmines ◽  
B. C. Fowler ◽  
P. D. Bell

Experiments were performed to determine the influence of depolarization on intracellular Ca2+ concentration ([Ca2+]i) in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles and thick ascending limb were dissected from rabbit kidney and loaded with fura 2. [Ca2+]i of nonperfused arterioles was monitored using a microscope-based dual-excitation wavelength spectrofluorometry system. Afferent arteriolar [Ca2+]i averaged 150 +/- 11 nM (n = 20) when bathed in Ringer solution containing 1.5 mM Ca2+ and 5 mM K+. Replacement of the normal Ringer solution with one containing 100 mM K+ significantly increased afferent arteriolar [Ca2+]i to 196 +/- 12 nM. This response was abolished in the absence of extracellular Ca2+. In the presence of 1 microM nifedipine, 100 mM K+ elicited a 10% decrease in afferent arteriolar [Ca2+]i (P < 0.05). Thus nifedipine reversed the afferent [Ca2+]i response to depolarization, implicating voltage-gated Ca2+ channels as the influx pathway. In contrast to the behavior of afferent arterioles, the 100 mM K+ solution reduced efferent arteriolar [Ca2+]i from 188 +/- 17 to 148 +/- 13 nM (n = 11, P < 0.01), an effect that was not influenced by nifedipine. These observations support a role for voltage-gated Ca2+ channels in eliciting depolarization-induced increases in afferent arteriolar [Ca2+]i while failing to provide evidence for operation of such a mechanism at efferent arteriolar sites.


2016 ◽  
Vol 10 (1) ◽  
pp. 99-126 ◽  
Author(s):  
Carola Wormuth ◽  
Andreas Lundt ◽  
Christina Henseler ◽  
Ralf Müller ◽  
Karl Broich ◽  
...  

Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.


Sign in / Sign up

Export Citation Format

Share Document