Procedural memory in Korsakoff's disease under different movement feedback conditions

2005 ◽  
Vol 159 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Stephan P. Swinnen ◽  
Veerle Puttemans ◽  
Sabine Lamote
2019 ◽  
Vol 62 (10) ◽  
pp. 3790-3807 ◽  
Author(s):  
Sara Ferman ◽  
Liat Kishon-Rabin ◽  
Hila Ganot-Budaga ◽  
Avi Karni

Purpose The purpose of this study was to delineate differences between children with specific language impairment (SLI), typical age–matched (TAM) children, and typical younger (TY) children in learning and mastering an undisclosed artificial morphological rule (AMR) through exposure and usage. Method Twenty-six participants (eight 10-year-old children with SLI, 8 TAM children, and ten 8-year-old TY children) were trained to master an AMR across multiple training sessions. The AMR required a phonological transformation of verbs depending on a semantic distinction: whether the preceding noun was animate or inanimate. All participants practiced the application of the AMR to repeated and new (generalization) items, via judgment and production tasks. Results The children with SLI derived significantly less benefit from practice than their peers in learning most aspects of the AMR, even exhibiting smaller gains compared to the TY group in some aspects. Children with SLI benefited less than TAM and even TY children from training to judge and produce repeated items of the AMR. Nevertheless, despite a significant disadvantage in baseline performance, the rate at which they mastered the task-specific phonological regularities was as robust as that of their peers. On the other hand, like 8-year-olds, only half of the SLI group succeeded in uncovering the nature of the AMR and, consequently, in generalizing it to new items. Conclusions Children with SLI were able to learn language aspects that rely on implicit, procedural learning, but experienced difficulties in learning aspects that relied on the explicit uncovering of the semantic principle of the AMR. The results suggest that some of the difficulties experienced by children with SLI when learning a complex language regularity cannot be accounted for by a broad, language-related, procedural memory disability. Rather, a deficit—perhaps a developmental delay in the ability to recruit and solve language problems and establish explicit knowledge regarding a language task—can better explain their difficulties in language learning.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


Author(s):  
Joshua Buffington ◽  
Alexander P. Demos ◽  
Kara Morgan-Short

Abstract Evidence for the role of procedural memory in second language (L2) acquisition has emerged in our field. However, little is known about the reliability and validity of the procedural memory measures used in this research. The present study (N = 119) examined the reliability and the convergent and discriminant validity of three assessments that have previously been used to examine procedural memory learning ability in L2 acquisition, the dual-task Weather Prediction Task (DT-WPT), the Alternating Serial Reaction Time Task (ASRT), and the Tower of London (TOL). Measures of declarative memory learning ability were also collected. For reliability, the DT-WPT and TOL tasks met acceptable standards. For validity, an exploratory factor analysis did not provide evidence for convergent validity, but the ASRT and the TOL showed reasonable discriminant validity with declarative memory measures. We argue that the ASRT may provide the purest engagement of procedural memory learning ability, although more reliable dependent measures for this task should be considered. The Serial Reaction Time task also appears promising, although we recommend further consideration of this task as the present analyses were post hoc and based on a smaller sample. We discuss these results regarding the assessment of procedural memory learning ability as well as implications for implicit language aptitude.


2021 ◽  
Vol 11 (2) ◽  
pp. 261
Author(s):  
Frank J. van Schalkwijk ◽  
Walter R. Gruber ◽  
Laurie A. Miller ◽  
Eugen Trinka ◽  
Yvonne Höller

Memory complaints are frequently reported by patients with epilepsy and are associated with seizure occurrence. Yet, the direct effects of seizures on memory retention are difficult to assess given their unpredictability. Furthermore, previous investigations have predominantly assessed declarative memory. This study evaluated within-subject effects of seizure occurrence on retention and consolidation of a procedural motor sequence learning task in patients with epilepsy undergoing continuous monitoring for five consecutive days. Of the total sample of patients considered for analyses (N = 53, Mage = 32.92 ± 13.80 y, range = 18–66 y; 43% male), 15 patients experienced seizures and were used for within-patient analyses. Within-patient contrasts showed general improvements over seizure-free (day + night) and seizure-affected retention periods. Yet, exploratory within-subject contrasts for patients diagnosed with temporal lobe epilepsy (n = 10) showed that only seizure-free retention periods resulted in significant improvements, as no performance changes were observed following seizure-affected retention. These results indicate general performance improvements and offline consolidation of procedural memory during the day and night. Furthermore, these results suggest the relevance of healthy temporal lobe functioning for successful consolidation of procedural information, as well as the importance of seizure control for effective retention and consolidation of procedural memory.


2005 ◽  
Vol 28 (1) ◽  
pp. 71-72
Author(s):  
Jonathan K. Foster ◽  
Andrew C. Wilson

In this target article, Walker seeks to clarify the current state of knowledge regarding sleep and memory. Walker's review represents an impressively heuristic attempt to synthesize the relevant literature. In this commentary, we question the focus on procedural memory and the use of the term “consolidation,” and we consider the extent to which empirically testable predictions can be derived from Walker's model.


SLEEP ◽  
2018 ◽  
Vol 41 (suppl_1) ◽  
pp. A40-A40
Author(s):  
K Kainec ◽  
A B Fitzroy ◽  
R M Spencer

2014 ◽  
Vol 62 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Carla D. Cash ◽  
Sarah E. Allen ◽  
Amy L. Simmons ◽  
Robert A. Duke

This study was designed to investigate the extent to which the presentation of an auditory model prior to learning a novel melody affects performance during active practice and the overnight consolidation of procedural memory. During evening training sessions, 32 nonpianist musicians practiced a 13-note keyboard melody with their left (nondominant) hand in twelve 30-s practice intervals separated by 30-s rest intervals. Participants were instructed to play the sequence “as quickly, accurately, and evenly as possible.” Approximately half the participants, prior to the first practice interval, listened to 10 repetitions of the target melody played at 552 tones per minute (half note = 138). All participants were tested on the target melody the following morning, approximately 12 hr after training, in three 30-s blocks separated by 30-s rest intervals. Performance was measured in terms of the mean number of correct key presses per 30-s block (CKP/B). Consistent with previous research, participants made considerable improvements in CKP/B during the evening training sessions and between the end of training and the morning test sessions. Learners who listened to the model made significantly larger gains in performance during training and between the end of training and test than did those who did not hear the model.


Sign in / Sign up

Export Citation Format

Share Document