Impairment of spatial short-term memory following acute administration of the NMDA receptor antagonist in heterozygous rolling Nagoya mice carrying the CaV2.1α1 mutation

2010 ◽  
Vol 213 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Eiki Takahashi ◽  
Kimie Niimi ◽  
Chitoshi Itakura
2012 ◽  
Vol 52 (9) ◽  
pp. 666-671 ◽  
Author(s):  
Akihiro Kubota ◽  
Takashi Tajima ◽  
Shinya Narukawa ◽  
Masamizu Yamazato ◽  
Hikoaki Fukaura ◽  
...  

2002 ◽  
Vol 444 (1-2) ◽  
pp. 83-96 ◽  
Author(s):  
Przemyslaw Mikolajczak ◽  
Irena Okulicz-Kozaryn ◽  
Ewa Kaminska ◽  
Lidia Niedopad ◽  
Anna Polanska ◽  
...  

Author(s):  
Monika Herian ◽  
Mateusz Skawski ◽  
Adam Wojtas ◽  
Małgorzata K. Sobocińska ◽  
Karolina Noworyta ◽  
...  

Abstract Rationale 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a potent serotonin 5-HT2A/2C receptor agonist with hallucinogenic activity. There is no data on the 25I-NBOMe effect on brain neurotransmission and animal performance after chronic administration. Objectives We examined the effect of a 7-day treatment with 25I-NBOMe (0.3 mg/kg/day) on neurotransmitters’ release and rats’ behavior in comparison to acute dose. Methods Changes in dopamine (DA), serotonin (5-HT), acetylcholine (ACh), and glutamate release were studied using microdialysis in freely moving rats. The hallucinogenic activity was measured in the wet dog shake (WDS) test. The animal locomotion was examined in the open field (OF) test, short-term memory in the novel object recognition (NOR) test. The anxiogenic/anxiolytic properties of the drug were tested using the light/dark box (LDB) test. Results Repeated administration of 25I-NBOMe decreased the response to a challenge dose of DA, 5-HT, and glutamatergic neurons in the frontal cortex as well as weakened the hallucinogenic activity in comparison to acute dose. In contrast, striatal and accumbal DA and 5-HT release and accumbal but not striatal glutamate release in response to the challenge dose of 25I-NBOMe was increased in comparison to acute treatment. The ACh release was increased in all brain regions. Behavioral tests showed a motor activity reduction and memory deficiency in comparison to a single dose and induction of anxiety after the drug’s chronic and acute administration. Conclusions Our findings suggest that multiple injections of 25I-NBOMe induce tolerance to hallucinogenic activity and produce alterations in neurotransmission. 25I-NBOMe effect on short-term memory, locomotor function, and anxiety seems to be the result of complex interactions between neurotransmitter pathways.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


Sign in / Sign up

Export Citation Format

Share Document