scholarly journals Ubiquinol-cytochrome c reductase core protein 1 overexpression protects H9c2 cardiac cells against mimic ischemia/reperfusion injury through PI3K/Akt/GSK-3β pathway

2020 ◽  
Vol 529 (4) ◽  
pp. 904-909
Author(s):  
Tingting Yi ◽  
Xiaoxiao Wu ◽  
Hong Li
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Tingting Yi ◽  
Xiaoxiao Wu ◽  
Zonghong Long ◽  
Guangyou Duan ◽  
Zhuoxi Wu ◽  
...  

In several recent studies, proteomics analyses suggest that increase of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is cardio-protective. However, direct evidence for this effect has not yet been obtained. Thus, the current study aimed to determine this effect and the mechanism underlying this effect. The results showed that overexpression of UQCRC1 protected H9c2 cardiac cells against in vitro simulated ischemia-reperfusion by maintaining mitochondrial membrane potential and suppressing the expression of caspase-3. These protective effects were significantly enhanced by exogenous Zn2+ but completely abolished by Zn2+-selective chelator TPEN. Furthermore, the upregulation of UQCRC1 reduced the concentration of free Zn2+ in mitochondria, whereas the downregulation of UQCRC1 increased the concentration of free Zn2+ in mitochondria. In conclusion, the overexpression of UQCRC1 can protect H9c2 cardiac cells against simulated ischemia/reperfusion, and this cardio-protective effect is likely mediated by zinc binding.


2015 ◽  
Vol 35 (6) ◽  
pp. 1625-1632 ◽  
Author(s):  
YICHAO YAN ◽  
GUANGYING LI ◽  
XIAOFENG TIAN ◽  
YINGJIANG YE ◽  
ZHIDONG GAO ◽  
...  

2009 ◽  
Vol 296 (5) ◽  
pp. H1236-H1243 ◽  
Author(s):  
Anindita Das ◽  
Fadi N. Salloum ◽  
Lei Xi ◽  
Yuan J. Rao ◽  
Rakesh C. Kukreja

Sildenafil, a selective inhibitor of phosphodiesterase type 5, induces powerful protection against myocardial ischemia-reperfusion injury through activation of cGMP-dependent protein kinase (PKG). We further hypothesized that PKG-dependent activation of survival kinase ERK may play a causative role in sildenafil-induced cardioprotection via induction of endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and Bcl-2. Our results show that acute intracoronary infusion of sildenafil in Langendorff isolated mouse hearts before global ischemia-reperfusion significantly reduced myocardial infarct size (from 29.4 ± 2.4% to 15.9 ± 3.0%; P < 0.05). Cotreatment with ERK inhibitor PD98059 abrogated sildenafil-induced protection (31.8 ± 4.4%). To further evaluate the role of ERK in delayed cardioprotection, mice were treated with sildenafil (ip) 24 h before global ischemia-reperfusion. PD98059 was administered (ip) 30 min before sildenafil treatment. Infarct size was reduced from 27.6 ± 3.3% in controls to 7.1 ± 1.5% in sildenafil-treated mice ( P < 0.05). The delayed protective effect of sildenafil was also abolished by PD98059 (22.5 ± 2.3%). Western blots revealed that sildenafil significantly increased phosphorylation of ERK1/2 and GSK-3β and induced iNOS, eNOS, Bcl-2, and PKG activity in the heart 24 h after treatment. PD98059 inhibited the enhanced expression of iNOS, eNOS, and Bcl-2 and the phosphorylation of GSK-3β. PD98059 had no effect on the sildenafil-induced activation of PKG. We conclude that these studies provide first direct evidence that PKG-dependent ERK phosphorylation is indispensable for the induction of eNOS/iNOS and Bcl-2 and the resulting cardioprotection by sildenafil.


Sign in / Sign up

Export Citation Format

Share Document