Macromolecular aging: ATP hydrolysis-driven functional and structural changes in Escherichia coli RecQ helicase

2021 ◽  
Vol 542 ◽  
pp. 29-33
Author(s):  
Dan Li ◽  
Hou-Qiang Xu ◽  
Xu-Guang Xi
1998 ◽  
Vol 75 (5) ◽  
pp. 2212-2219 ◽  
Author(s):  
Dmitri I. Svergun ◽  
Ingo Aldag ◽  
Tanja Sieck ◽  
Karlheinz Altendorf ◽  
Michel H.J. Koch ◽  
...  

Biopolymers ◽  
1993 ◽  
Vol 33 (11) ◽  
pp. 1747-1755 ◽  
Author(s):  
A. A. Timchenko ◽  
J. Langowski ◽  
I. N. Serdyuk

2020 ◽  
Vol 22 (1) ◽  
pp. 104
Author(s):  
Peter Franz ◽  
Wiebke Ewert ◽  
Matthias Preller ◽  
Georgios Tsiavaliaris

The actomyosin system generates mechanical work with the execution of the power stroke, an ATP-driven, two-step rotational swing of the myosin-neck that occurs post ATP hydrolysis during the transition from weakly to strongly actin-bound myosin states concomitant with Pi release and prior to ADP dissociation. The activating role of actin on product release and force generation is well documented; however, the communication paths associated with weak-to-strong transitions are poorly characterized. With the aid of mutant analyses based on kinetic investigations and simulations, we identified the W-helix as an important hub coupling the structural changes of switch elements during ATP hydrolysis to temporally controlled interactions with actin that are passed to the central transducer and converter. Disturbing the W-helix/transducer pathway increased actin-activated ATP turnover and reduced motor performance as a consequence of prolonged duration of the strongly actin-attached states. Actin-triggered Pi release was accelerated, while ADP release considerably decelerated, both limiting maximum ATPase, thus transforming myosin-2 into a high-duty-ratio motor. This kinetic signature of the mutant allowed us to define the fractional occupancies of intermediate states during the ATPase cycle providing evidence that myosin populates a cleft-closure state of strong actin interaction during the weak-to-strong transition with bound hydrolysis products before accomplishing the power stroke.


2019 ◽  
Vol 295 (6) ◽  
pp. 1551-1564 ◽  
Author(s):  
Kelly E. Du Pont ◽  
Russell B. Davidson ◽  
Martin McCullagh ◽  
Brian J. Geiss

The unwinding of dsRNA intermediates is critical for the replication of flavivirus RNA genomes. This activity is provided by the C-terminal helicase domain of viral nonstructural protein 3 (NS3). As a member of the superfamily 2 (SF2) helicases, NS3 requires the binding and hydrolysis of ATP/NTP to translocate along and unwind double-stranded nucleic acids. However, the mechanism of energy transduction between the ATP- and RNA-binding pockets is not well-understood. Previous molecular dynamics simulations conducted by our group have identified Motif V as a potential “communication hub” for this energy transduction pathway. To investigate the role of Motif V in this process, here we combined molecular dynamics, biochemistry, and virology approaches. We tested Motif V mutations in both the replicon and recombinant protein systems to investigate viral genome replication, RNA-binding affinity, ATP hydrolysis activity, and helicase-mediated unwinding activity. We found that the T407A and S411A substitutions in NS3 reduce viral replication and increase the helicase-unwinding turnover rates by 1.7- and 3.5-fold, respectively, suggesting that flaviviruses may use suboptimal NS3 helicase activity for optimal genome replication. Additionally, we used simulations of each mutant to probe structural changes within NS3 caused by each mutation. These simulations indicate that Motif V controls communication between the ATP-binding pocket and the helical gate. These results help define the linkage between ATP hydrolysis and helicase activities within NS3 and provide insight into the biophysical mechanisms for ATPase-driven NS3 helicase function.


Sign in / Sign up

Export Citation Format

Share Document