Development of a quantitative real-time PCR assay for detection of unknown α-globin gene deletions

2010 ◽  
Vol 45 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Mohammad-Sadegh Fallah ◽  
Reza Mahdian ◽  
Seyyed-Ahmad Aleyasin ◽  
Somayeh Jamali ◽  
Mina Hayat-Nosaeid ◽  
...  
2008 ◽  
Vol 375 (1) ◽  
pp. 150-152 ◽  
Author(s):  
Cheng Xin Yi ◽  
Jun Zhang ◽  
Ka Man Chan ◽  
Xiao Kun Liu ◽  
Yan Hong

2011 ◽  
Vol 50 (3) ◽  
pp. 948-952 ◽  
Author(s):  
J.-F. Jazeron ◽  
C. Barbe ◽  
E. Frobert ◽  
F. Renois ◽  
D. Talmud ◽  
...  

mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Christian Shema Mugisha ◽  
Hung R. Vuong ◽  
Maritza Puray-Chavez ◽  
Adam L. Bailey ◽  
Julie M. Fox ◽  
...  

ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions within just a few months, causing severe respiratory disease and mortality. Assays to monitor SARS-CoV-2 growth in vitro depend on time-consuming and costly RNA extraction steps, hampering progress in basic research and drug development efforts. Here, we developed a simplified quantitative real-time PCR assay that bypasses viral RNA extraction steps and can monitor SARS-CoV-2 growth from a small amount of cell culture supernatants. In addition, we show that this approach is easily adaptable to numerous other RNA and DNA viruses. Using this assay, we screened the activities of a number of compounds that were predicted to alter SARS-CoV-2 entry and replication as well as HIV-1-specific drugs in a proof-of-concept study. We found that E64D (inhibitor of endosomal proteases cathepsin B and L) and apilimod (endosomal trafficking inhibitor) potently decreased the amount of SARS-CoV-2 RNA in cell culture supernatants with minimal cytotoxicity. Surprisingly, we found that the macropinocytosis inhibitor ethylisopropylamiloride (EIPA) similarly decreased SARS-CoV-2 RNA levels in supernatants, suggesting that entry may additionally be mediated by an alternative pathway. HIV-1-specific inhibitors nevirapine (a nonnucleoside reverse transcriptase inhibitor [NNRTI]), amprenavir (a protease inhibitor), and allosteric integrase inhibitor 2 (ALLINI-2) modestly inhibited SARS-CoV-2 replication, albeit the 50% inhibitory concentration (IC50) values were much higher than that required for HIV-1. Taking the data together, this simplified assay will expedite basic SARS-CoV-2 research, be amenable to mid-throughput screening assays (i.e., drug, CRISPR, small interfering RNA [siRNA], etc.), and be applicable to a broad number of RNA and DNA viruses. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, is continuing to cause immense respiratory disease and social and economic disruptions. Conventional assays that monitor SARS-CoV-2 growth in cell culture rely on costly and time-consuming RNA extraction procedures, hampering progress in basic SARS-CoV-2 research and development of effective therapeutics. Here, we developed a simple quantitative real-time PCR assay to monitor SARS-CoV-2 growth in cell culture supernatants that does not necessitate RNA extraction and that is as accurate and sensitive as existing methods. In a proof-of-concept screen, we found that E64D, apilimod, EIPA, and remdesivir can substantially impede SARS-Cov-2 replication, providing novel insight into viral entry and replication mechanisms. In addition, we show that this approach is easily adaptable to numerous other RNA and DNA viruses. This simplified assay will undoubtedly expedite basic SARS-CoV-2 and virology research and be amenable to use in drug screening platforms to identify therapeutics against SARS-CoV-2.


2010 ◽  
Vol 61 (6) ◽  
pp. 515-519 ◽  
Author(s):  
Antonio Cobo Molinos ◽  
Hikmate Abriouel ◽  
Nabil Ben Omar ◽  
Magdalena Martinez-Canamero ◽  
Antonio Gálvez

2016 ◽  
Vol 54 (7) ◽  
pp. 1930-1930 ◽  
Author(s):  
David W. Hilbert ◽  
William L. Smith ◽  
Sean G. Chadwick ◽  
Geoffrey Toner ◽  
Eli Mordechai ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Runa M Grimholt ◽  
Petter Urdal ◽  
Olav Klingenberg ◽  
Armin P Piehler

Abstract Background Alpha-thalassemia is the most common human genetic disease worldwide. Copy number variations in the form of deletions of α-globin genes lead to α-thalassemia while duplications of α-globin genes can cause a severe phenotype in β-thalassemia carriers due to accentuation of globin chain imbalance. It is important to have simple and reliable methods to identify unknown or rare deletions and duplications in cases in which thalassemia is suspected but cannot be confirmed by multiplex gap-PCR. Here we describe a copy number variation assay to detect deletions and duplications in the α-globin gene cluster (HBA-CNV). Results Quantitative real-time PCR was performed using four TaqMan® assays which specifically amplify target sequences representing both the α-globin genes, the –α3.7 deletion and the HS-40 region. The copy number for each target was determined by the 2-ΔΔCq method. To validate our method, we compared the HBA-CNV method with traditional gap-PCR in 108 samples from patients referred to our laboratory for hemoglobinopathy evaluation. To determine the robustness of the four assays, we analyzed samples with and without deletions diluted to obtain different DNA concentrations. The HBA-CNV method identified the correct copy numbers in all 108 samples. All four assays showed the correct copy number within a wide range of DNA concentrations (3.2-100 ng/μL), showing that it is a robust and reliable method. By using the method in routine diagnostics of hemoglobinopathies we have also identified several deletions and duplications that are not detected with conventional gap-PCR. Conclusions HBA-CNV is able to detect all known large deletions and duplications affecting the α-globin genes, providing a flexible and simple workflow with rapid and reliable results.


Sign in / Sign up

Export Citation Format

Share Document