Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica

Biochimie ◽  
2013 ◽  
Vol 95 (2) ◽  
pp. 309-319 ◽  
Author(s):  
Ghulam Jeelani ◽  
Afzal Husain ◽  
Dan Sato ◽  
Tomoyoshi Soga ◽  
Makoto Suematsu ◽  
...  
2005 ◽  
Vol 4 (4) ◽  
pp. 827-831 ◽  
Author(s):  
Mami Okada ◽  
Christopher D. Huston ◽  
Barbara J. Mann ◽  
William A. Petri ◽  
Kiyoshi Kita ◽  
...  

ABSTRACT Proteomic analysis of phagosomes isolated from Entamoeba histolytica by liquid chromatography and mass spectrometry identified 85 proteins involved in surface recognition, actin cytoskeleton rearrangement, vesicular trafficking, and degradation. Phagosome localization of representative proteins was verified by immunofluorescence assay. This study should provide a basis for molecular identification and characterization of phagosome biogenesis.


2007 ◽  
Vol 6 (6) ◽  
pp. 940-948 ◽  
Author(s):  
Carrie A. Davis ◽  
Michael P. S. Brown ◽  
Upinder Singh

ABSTRACT Pre-mRNA splicing is essential to ensure accurate expression of many genes in eukaryotic organisms. In Entamoeba histolytica, a deep-branching eukaryote, approximately 30% of the annotated genes are predicted to contain introns; however, the accuracy of these predictions has not been tested. In this study, we mined an expressed sequence tag (EST) library representing 7% of amoebic genes and found evidence supporting splicing of 60% of the testable intron predictions, the majority of which contain a GUUUGU 5′ splice site and a UAG 3′ splice site. Additionally, we identified several splice site misannotations, evidence for the existence of 30 novel introns in previously annotated genes, and identified novel genes through uncovering their spliced ESTs. Finally, we provided molecular evidence for the E. histolytica U2, U4, and U5 snRNAs. These data lay the foundation for further dissection of the role of RNA processing in E. histolytica gene expression.


1994 ◽  
Vol 303 (3) ◽  
pp. 743-748 ◽  
Author(s):  
I Bruchhaus ◽  
E Tannich

A bifunctional 95 kDa polypeptide (EhADH2) harbouring acetaldehyde dehydrogenase and alcohol dehydrogenase activities was purified to homogeneity from trophozoite extracts of the protozoan parasite Entamoeba histolytica. Kinetic studies revealed that the enzyme utilizes NAD+ rather than NADP+ as cofactor. Km values for acetyl-CoA, acetaldehyde and ethanol were found to be 0.015, 0.15 and 80 mM respectively in the presence of 0.2 mM NAD+. The primary structure of EhADH2 as deduced from respective amoebic DNA sequences showed striking similarity to the trifunctional AdhE protein of Escherichia coli and the bifunctional AAD protein of Clostridium acetobutylicum. Alignment with a number of aldehyde dehydrogenases and alcohol dehydrogenases from various species suggested that the two catalytic functions of EhADH2 are located on separate parts of the molecule. By cross-linking experiments and electron-microscopic analysis, native EhADH2 was found to be organized in a homopolymeric fashion consisting of more than 20 associated promoters which form rods about 50-120 nm in length.


Sign in / Sign up

Export Citation Format

Share Document