Schistosome TRPML channels play a role in neuromuscular activity and tegumental integrity

Biochimie ◽  
2022 ◽  
Author(s):  
Swarna Bais ◽  
Abigail Norwillo ◽  
Gordon Ruthel ◽  
De’Broski R. Herbert ◽  
Bruce D. Freedman ◽  
...  
2018 ◽  
Vol 7 (5) ◽  
pp. 289-296
Author(s):  
Seita Kuki ◽  
Takuya Yoshida ◽  
Masamichi Okudaira ◽  
Yu Konishi ◽  
Keigo Ohyama-Byun ◽  
...  

1995 ◽  
Vol 269 (4) ◽  
pp. C856-C862 ◽  
Author(s):  
H. Sveistrup ◽  
R. Y. Chan ◽  
B. J. Jasmin

We determined levels of mRNA encoding acetylcholinesterase (AChE) in muscles of rats subjected to chronic enhancement of neuromuscular activation. After 8 wk of voluntary wheel running, extensor digitorum longus (EDL) muscles displayed a 72% increase in total AChE activity as a result of a selective threefold increase in the G4 content. Soleus muscles, on the other hand, exhibited a 30% decrease in A12 while displaying a small (33%) increase in total AChE activity. These enzymatic adaptations were paralleled by increases in the levels of AChE mRNAs in both EDL (32%; P < 0.03) and soleus (42%; P < 0.02) muscles. In addition, compensatory hypertrophy of the plantaris muscle increased total AChE activity by 75%. This change was reflected by an elevation in all AChE molecular forms with A12 (89%) and A8 (179%) showing the most prominent increases. Similar to exercise-trained muscles, hypertrophied plantaris muscles displayed an increase in AChE transcripts (25%; P < 0.04). These results indicate that increases in neuromuscular activity modulate expression of the AChE gene in vivo and suggest the involvement of pretranslational regulatory mechanisms in the adaptive response of AChE to enhanced neuromuscular activation.


1998 ◽  
Vol 77 (11) ◽  
pp. 1931-1938 ◽  
Author(s):  
K.R. Agrawal ◽  
P.W. Lucas ◽  
I.C. Bruce ◽  
J.F. Prinz

2009 ◽  
Vol 106 (4) ◽  
pp. 1249-1256 ◽  
Author(s):  
Anthony D. Kay ◽  
Anthony J. Blazevich

The effects of static stretch on muscle and tendon mechanical properties and muscle activation were studied in fifteen healthy human volunteers. Peak active and passive moment data were recorded during plantar flexion trials on an isokinetic dynamometer. Electromyography (EMG) monitoring of the triceps surae muscles, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Subjects performed three 60-s static stretches before being retested 2 min and 30 min poststretch. There were three main findings in the present study. First, peak concentric moment was significantly reduced after stretch; 60% of the deficit recovered 30 min poststretch. This was accompanied by, and correlated with ( r = 0.81 ; P < 0.01) reductions in peak triceps surae EMG amplitude, which was fully recovered at 30 min poststretch. Second, Achilles tendon length was significantly shorter during the concentric contraction after stretch and at 30 min poststretch; however, no change in tendon stiffness was detected. Third, passive joint moment was significantly reduced after stretch, and this was accompanied by significant reductions in medial gastrocnemius passive muscle stiffness; both measures fully recovered by 30 min poststretch. These data indicate that the stretching protocol used in this study induced losses in concentric moment that were accompanied by, and related to, reductions in neuromuscular activity, but they were not associated with alterations in tendon stiffness or shorter muscle operating length. Reductions in passive moment were associated with reductions in muscle stiffness, whereas tendon mechanics were unaffected by the stretch. Importantly, the impact on mechanical properties and neuromuscular activity was minimal at 30 min poststretch.


2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


2021 ◽  
Vol 61 ◽  
pp. 102608
Author(s):  
Munlika Sremakaew ◽  
Julia Treleaven ◽  
Gwendolen Jull ◽  
Parinya Vongvaivanichakul ◽  
Sureeporn Uthaikhup

Sign in / Sign up

Export Citation Format

Share Document