muscle oxygenation
Recently Published Documents


TOTAL DOCUMENTS

628
(FIVE YEARS 151)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
pp. 100286
Author(s):  
Mônica Volino-Souza ◽  
Gustavo Vieira de Oliveira ◽  
Elisa Barros-Santos ◽  
Carlos Adam Conte-Junior ◽  
Thiago Silveira Alvares

2021 ◽  
Vol 11 (22) ◽  
pp. 10621
Author(s):  
Kuei-Yu Chien ◽  
Wei-Han Chen ◽  
Feng-Yi Chang ◽  
Yong Yang ◽  
Hsiao-Yun Chang ◽  
...  

This study investigated the effects of rowing with different seat cushion and cadence conditions on oxyhemoglobin (O2Hb) and total hemoglobin (tHb) levels of the erector spinae (ES) as well as the effects on heart rate (HR) and ratings of perceived exertion (RPE). Thirty healthy adults completed tests under three unstable air seat cushion pressure levels (0, 80, and 140 mmHg) and three rowing cadences (slow: 18 bpm, medium: 30 bpm, and fast: 36 bpm) on a rowing machine, for a total of nine test conditions. During the exercise period, rowing on cushions set to 80 mmHg resulted in greater O2Hb and tHb changes than did rowing at 0 mmHg (p < 0.05). When rowing cadence increased, the O2Hb and tHb decreased during the exercise period, whereas HR and RPE increased (p < 0.05). During the recovery period, O2Hb and tHb on cushions set to 140 mmHg during slow rowing were higher than those at 0 mmHg during slow rowing and 140 mmHg during fast rowing (p < 0.05). Rowing on an appropriate pressure of seat cushion and using a slow cadence contribute to increasing muscle oxygenation of low back during exercise.


Author(s):  
Andri Feldmann ◽  
Remo Lehmann ◽  
Frieder Wittmann ◽  
Peter Wolf ◽  
Jiří Baláš ◽  
...  

AbstractHigh-intensity training (HIT) is known to have deteriorating effects on performance which manifest in various physiological changes such as lowered force production and oxidative capacity. However, the effect of HIT in climbing on finger flexor performance has not been investigated yet. Twenty-one climbers partook in an intervention study with three assessment time points: pre-HIT, post-HIT, and 24-h post-HIT. The HIT involved four five-minute exhaustive climbing tasks. Eight climbers were assigned to a control group. Assessments consisted of three finger flexor tests: maximum voluntary contraction (MVC), sustained contraction (SCT), and intermittent contraction tests (ICT). During the SCT muscle oxygenation (SmO2) metrics were collected via NIRS sensors on the forearm. The HIT had significant deteriorating effects on all force production metrics (MVC − 18%, SCT − 55%, ICT − 59%). Post-24 h showed significant recovery, which was less pronounced for the endurance tests (MVC − 3%, SCT − 16%, ICT − 22%). SmO2 metrics provided similar results for the SCT with medium to large effect sizes. Minimally attainable SmO2 and resting SmO2 both showed moderate negative correlations with pre-HIT force production respectively; r = − 0.41, P = 0.102; r = − 0.361, P = 0.154. A strong association was found between a loss of force production and change in minimally attainable SmO2 (r = − 0.734, P = 0.016). This study presents novel findings on the deteriorating effects of HIT on finger flexor performance and their oxidative capacity. Specifically, the divergent results between strength and endurance tests should be of interest to coaches and athletes when assessing athlete readiness.


2021 ◽  
Vol 3 (122) ◽  
pp. 42-58
Author(s):  
Antoine Jolicoeur Desroches ◽  
Frédéric Domingue ◽  
Louis Laurencelle ◽  
Claude Lajoie

This study aimed to determine the effects of consuming a high fat solution (HFS) compared to a high carbohydrate solution (HCS) during a cycling effort on substrate oxidation, muscle oxygenation and performance with cyclists and triathletes. Thirteen men participated in this study (age: 30.4 ± 6.3 y; height: 178.7 ± 6.1 cm; weight: 74.9 ± 6.5 kg; V̇O2 peak: 60.5 ± 7.9 mlO2×kg-1×min-1). The solutions were isocaloric (total of 720 kcal) and were consumed every 20 minutes. Each solution of HFS contained 12.78 g of lipids, 1.33 g of carbohydrates and 0.67 g of proteins, and each solution of HCS contained 28 g of carbohydrates. We measured pulmonary oxygen consumption and skeletal muscle oxygenation, using a Near Infrared Spectrometer (NIRS) during a cycling effort consisting of 2 hours at 65 % of maximal aerobic power (MAP) followed immediately by a 3-minute time-trial (TT). We observed that the consumption of the HFS increased the rate of fat oxidation at the end of the sub-maximal effort (0.61 ± 0.14 vs 0.53 ± 0.17 g×min-1, p < 0.05). We have also shown that the HFS negatively affected the performance in the TT (mean Watts: HCS: 347.0 ± 77.4 vs HFS: 326.5 ± 88.8 W; p < 0.05) and the rating of perceived exertions during the sub-maximal effort (modified Borg Perceived Exertion scale: 1–10) (mean: 3.62 ± 0.58 for HCS vs 4.16 ± 0.62 for HFS; p < 0.05). We did not observe a significant effect of the acute consumption of the HFS compared to the HCS on muscle oxygenation during the cycling effort. Finally, we observed that cyclists who demonstrated a high skeletal muscle deoxygenation relative to their pulmonary oxygen consumption (DHHb/V̇O2) had a higher fat oxidation capacity (higher Fatmax). In conclusion, even though the consumption of HFS increased the rate of fat oxidation at the end of a sub-maximal effort, it did not affect muscle oxygenation and it negatively affected performance and perceived exertion during a time-trial and caused gastro-intestinal distress in some participants. Keywords: Fat oxidation, Skeletal muscle oxygenation, Lipid supplementation, Carbohydrate supplementation, Near Infrared Spectroscopy (NIRS), Cycling, Triathlon.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Yuko Kurosawa ◽  
Shinsuke Nirengi ◽  
Izumi Tabata ◽  
Tadao Isaka ◽  
Joseph F. Clark ◽  
...  

Author(s):  
Chiel Poffe ◽  
Ruben Robberechts ◽  
Tim Podlogar ◽  
Martijn Kusters ◽  
Tadej Debevec ◽  
...  

Available evidence indicates that elevated blood ketones are associated with improved hypoxic tolerance in rodents. From this perspective, we hypothesized that exogenous ketosis by oral intake of the ketone ester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KE) may induce beneficial physiological effects during prolonged exercise in acute hypoxia. As we recently demonstrated KE to deplete blood bicarbonate, which per se may alter the physiological response to hypoxia, we evaluated the effect of KE both in the presence and absence of bicarbonate intake (BIC). Fourteen highly trained male cyclists performed a simulated cycling race (RACE) consisting of 3h intermittent cycling (IMT180') followed by a 15-min time-trial (TT15') and an all-out sprint at 175% of lactate threshold (SPRINT). During RACE, fraction of inspired oxygen (FiO2) was gradually decreased from 18.6 to 14.5%. Before and during RACE, participants received either i) 75g ketone ester (KE), ii) 300 mg/kg body mass bicarbonate (BIC), iii) KE+BIC or iv) a control drink in addition to 60g carbohydrates per h in a randomized, crossover design. KE counteracted the hypoxia-induced drop in blood (SpO2) and muscle oxygenation by ~3%. In contrast, BIC decreased SpO2 by ~2% without impacting muscle oxygenation. Performance during TT15' and SPRINT were similar between all conditions. In conclusion, KE slightly elevated the degree of blood and muscle oxygenation during prolonged exercise in moderate hypoxia without impacting exercise performance. Our data warrant to further investigate the potential of exogenous ketosis to improve muscular and cerebral oxygenation status, and exercise tolerance in extreme hypoxia.


Author(s):  
Botond Szucs ◽  
Mate Petrekanits ◽  
Monika Fekete ◽  
Janos T Varga

Abstract Background Near-infrared spectroscopy (NIRS) technology can evaluate muscle metabolism and oxygenation. NIRS-based oximeters can measure skeletal muscle oxygen delivery and utilization during static and dynamic work non-invasively. Our goal was to assess the value and usability of NIRS technology in chronic obstructive pulmonary disease (COPD) rehabilitation program. Methods Forty patients with COPD participated in a 4-week inpatient rehabilitation program that included breathing exercises and personalized cycle/treadmill training adjusted to the functional capacity, physical activity and comorbidities of the patients. A NIRS muscle oxygen monitor was used to measure tissue oxygenation and hemoglobin levels. Total hemoglobin index, average muscle oxygenation, minimal and maximal muscle oxygenation were recorded before and after the rehabilitation program. Results Rehabilitation resulted improvement in 6 min walking distance (6MWD:335.3 ± 110. vs. 398.3 ± 126.2 m; P < 0.01), maximal inspiratory pressure (MIP: 57.7 ± 22.7 vs. 63.6 ± 18.0 cmH2O; P < 0.01), chest wall expansion (CWE: 2.84 ± 1.26 vs, 4.00 ± 1.76 cm; P < 0.01), breath hold time (BHT: 25.8 ± 10.6 vs. 29.2 ± 11.6 s; P < 0.01) and grip strength (GS: 24.9 ± 11.9 vs. 27.0 ± 11.4 kg; P < 0.01). Quality of life improvement was monitored by COPD Assessment Test (CAT: 17.00 ± 8.49 vs. 11.89 ± 7.3, P < 0.05). Total hemoglobin index (tHb: 12.8 ± 1.3% vs. 12.8 ± 1.4), average muscle oxygenation (SmO2: 67.5 ± 14.4% vs. 65.2 ± 20.4%) showed a tendency for improvement. Maximal muscle oxygenation decreased (SmO2 max: 98.0 ± 20.5% vs. 90.1 ± 14.3%; P < 0.01). Minimal muscle oxygenation increased (SmO2 min: 42.6 ± 12.6% vs. 54.8 ± 14.3%; P < 0.01). Conclusions NIRS results showed that muscle oxygenation and microcirculation can be described as a high-risk factor in COPD patients. The 4-week rehabilitation improves functional parameters, quality of life and tissue oxygenation levels in COPD patients.


Sign in / Sign up

Export Citation Format

Share Document