Antagonism between two natural enemies improves biological control of a coffee pest: The importance of dominance hierarchies

2014 ◽  
Vol 76 ◽  
pp. 107-113 ◽  
Author(s):  
Theresa W. Ong ◽  
John H. Vandermeer
EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Author(s):  
Léna Durocher-Granger ◽  
Tibonge Mfune ◽  
Monde Musesha ◽  
Alyssa Lowry ◽  
Kathryn Reynolds ◽  
...  

AbstractInvasive alien species have environmental, economic and social impacts, disproportionally threatening livelihood and food security of smallholder farmers in low- and medium-income countries. Fall armyworm (FAW) (Spodoptera frugiperda), an invasive insect pest from the Americas, causes considerable losses on maize to smallholder farmers in Africa since 2016. The increased use of pesticides to control FAW in Africa raises concerns for health and environmental risks resulting in a growing interest in research on biological control options for smallholder farmers. In order to evaluate the occurrence of local natural enemies attacking FAW, we collected on a weekly basis FAW eggs and larvae during a maize crop cycle in the rainy season of 2018–2019 at four locations in the Lusaka and Central provinces in Zambia. A total of 4373 larvae and 162 egg masses were collected. For each location and date of collection, crop stage, the number of plants checked and amount of damage were recorded to analyse which factors best explain the occurrence of the natural enemy species on maize. Overall parasitism rates from local natural enemies at each location varied between 8.45% and 33.11%. We identified 12 different egg-larval, larval and larval-pupal parasitoid species. Location, maize growth stage, pest density and larval stage significantly affected parasitoid species occurrence. Our findings indicate that there is potential for increasing local populations of natural enemies of FAW through conservation biological control programmes and develop safe and practical control methods for smallholder farmers.


Soil Science ◽  
1975 ◽  
Vol 120 (4) ◽  
pp. 316
Author(s):  
FRED C. SWIFT

2004 ◽  
Vol 57 (5) ◽  
pp. 570
Author(s):  
Chase W. Metzger ◽  
Ann Hajek

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3795 ◽  
Author(s):  
Hafiz Sohaib Ahmed Saqib ◽  
Minsheng You ◽  
Geoff M. Gurr

Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H)—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies.


Sign in / Sign up

Export Citation Format

Share Document