brassica crop
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1704
Author(s):  
Je-Seung Jeon ◽  
Desalegn W. Etalo ◽  
Natalia Carreno-Quintero ◽  
Ric C. H. de Vos ◽  
Jos M. Raaijmakers

Genome-wide analysis of plant-growth-promoting Pseudomonas fluorescens strain SS101 (PfSS101) followed by site-directed mutagenesis previously suggested that sulfur assimilation may play an important role in growth promotion and induced systemic resistance in Arabidopsis. Here, we investigated the effects of sulfur metabolism in PfSS101 on growth, defense, and shoot metabolomes of Arabidopsis and the Brassica crop, Broccoli. Root tips of seedlings of Arabidopsis and two Broccoli cultivars were treated with PfSS101 or with a mutant disrupted in the adenylsulfate reductase cysH, a key gene in cysteine and methionine biosynthesis. Phenotyping of plants treated with wild-type PfSS101 or its cysH mutant revealed that sulfur assimilation in PfSS101 was associated with enhanced growth of Arabidopsis but with a reduction in shoot biomass of two Broccoli cultivars. Untargeted metabolomics revealed that cysH-mediated sulfur assimilation in PfSS101 had significant effects on shoot chemistry of Arabidopsis, in particular on chain elongation of aliphatic glucosinolates (GLSs) and on indole metabolites, including camalexin and the growth hormone indole-3-acetic acid. In Broccoli, PfSS101 sulfur assimilation significantly upregulated the relative abundance of several shoot metabolites, in particular, indolic GLSs and phenylpropanoids. These metabolome changes in Broccoli plants coincided with PfSS101-mediated suppression of leaf infections by Xanthomonas campestris. Our study showed the metabolic interconnectedness of plants and their root-associated microbiota.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-8
Author(s):  
Muhammad Nouman Khalid ◽  

Brassica is the second-largest oilseed crop after Soybean. The total production of Brassica in the overall world is 71 million tons. In Pakistan, its total production per unit area is very low. Biotic and abiotic stresses mainly affect the brassica crop. In agriculture, shattering is the dispersal of crops seeds before their ripening. The pod wall shatters and breaks apart when it loses its hydration and cells split in a dehiscence zone organized at a suture between the edge of the lignified pod and the vascular tissue replum. The degeneration of middle lamella and loss of cellular cohesion in the dehiscence zone are the main reasons for pod shattering and seed losses. Grain yield losses in Brassica vary from 10 to 25 percent due to shattering. More than 400 kg has-1 or 12% seed losses can be occurred due to pod shattering under unfavorable conditions. Insect pest and disease damage also accelerate ripening and pod shattering. The main breeding techniques for developing rapeseed grain yield potential are a good knowledge and application of the morphological, physiological, and genetic basis of grain yield. Modern technologies, such as embryo rescue, marker-assisted breeding, and novel variation (mutation), may make it much simpler to introduce new rapeseed types having shattering tolerance than traditional methods. Thus, an overview of anatomical and physiological aspects and genetics of shattering is presented in the context of recent advances in molecular genetics and several agronomic managements to avoid shattering in Brassica.


Author(s):  
Kangni Zhang ◽  
Annaliese S. Mason ◽  
Muhammad A. Farooq ◽  
Faisal Islam ◽  
Daniela Quezada-Martinez ◽  
...  
Keyword(s):  

Author(s):  
Alex C McAlvay ◽  
Aaron P Ragsdale ◽  
Makenzie E Mabry ◽  
Xinshuai Qi ◽  
Kevin A Bird ◽  
...  

Abstract The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific non-crop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived SNPs for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that non-crop samples from the Caucasus, Siberia, and Italy may be truly wild, while those occurring in the Americas and much of Europe are feral. Clustering, tree-based analyses, and parameterized demographic inference further indicate that turnips were likely the first crop type domesticated, from which leafy types in East Asia and Europe were selected from distinct lineages. These findings clarify the domestication history and nature of wild crop genetic resources for B. rapa, which provides the first step toward investigating cases of possible parallel selection, the domestication and feralization syndrome, and novel germplasm for Brassica crop improvement.


Author(s):  
Yueqi Zhang ◽  
◽  
Ting Xiang Neik ◽  
Junrey C. Amas ◽  
Aldrin Y. Cantila ◽  
...  

The Brassica genus contains many agriculturally important oilseed and vegetable crops. Brassica germplasm, including natural accessions and breeding populations, are maintained globally for sustainable management and enhancement of Brassica crop production which is critical to meet the demands of population growth and challenges of environmental stresses due to global climate change. DNA based markers, such as SNPs, are commonly used to screen large numbers of Brassica germplasm for conservation, genetic mapping and association studies. This chapter focuses on the application of SNP genotyping technologies for conservation of Brassica germplasm, uncovering the genetic basis of various biotic and abiotic stresses and screening for yield related traits and oil quality through marker-trait association studies.


2021 ◽  
Vol 9 (3) ◽  
pp. 591
Author(s):  
Filip Gazdik ◽  
Samuel Magnus ◽  
Steven J. Roberts ◽  
Rafal Baranski ◽  
Jana Cechova ◽  
...  

Xanthomonas campestris pv. campestris (Xcc) is a bacterium that causes black rot of crucifers. The greatest losses of brassica crop production usually result from seed-borne infection, but carry-over of inoculum in field soil may also be possible. The aim of this study was to monitor persistence of Xcc in field soil in central Europe using a conventional PCR assay with hrpF primers and a two-step nested real-time PCR assay using Zur primers. The work has demonstrated that nested real-time PCR can be used to improve the analytical sensitivity for detection of Xcc in soil compared to conventional PCR, and that Xcc may persist in soil for up to two years following an infected brassica crop in central European climatic conditions.


2021 ◽  
Author(s):  
Bahaderjeet Singh ◽  
Amanpreet Singh Sran ◽  
Gagandeep Singh Sohi

Mustard crop is the third important source of vegetable oil randomly below soybean L. and palm, all over the world. Brassica crop is extremely susceptible to some biotic and abiotic stresses and they significantly influence the quality and quantity of the crop. In the past generally breeding techniques are used to develop resistance in mustard to avoid diseases though various pathogens are soon able to overcome that resistance by modifying their metabolic cycles. To bear the challenge there is an urgent need to develop abiotic as well as biotic stress tolerant plants using advanced techniques by understanding metabolic and biochemical pathways of plants and pathogens. Several techniques such selection of stress tolerance microbes, metabolite, enzymes, and genes are very important to avoid stresses. Whereas several techniques such as deployment of molecular markers for breeding, identification of Quantitative trait loci (QTL), in vitro tissue culture etc. can be more useful to improve biotic and abiotic stress tolerance in mustard. To develop healthy and high yield varieties, the mix of these techniques is needs to be implemented.


Genome ◽  
2020 ◽  
Vol 63 (2) ◽  
pp. 91-101 ◽  
Author(s):  
Mehdi Farid ◽  
Rong-Cai Yang ◽  
Berisso Kebede ◽  
Habibur Rahman

Clubroot disease caused by Plasmodiophora brassicae is a challenge to Brassica crop production. Breakdown of resistance controlled by major genes of the Brassica A genome has been reported. Therefore, identification of resistance in the Brassica C genome is needed to broaden the genetic base of resistance in Brassica napus canola. In this study, we evaluated 135 Brassica oleracea accessions, belonging to eight variants of this species to identify resistant accessions as well as to identify the genomic regions associated with resistance to two recently evolved P. brassicae pathotypes, F3-14 (3A) and F-359-13 (5X L-G2). Resistance to these pathotypes was observed more frequently in var. acephala (kale) followed by var. capitata (cabbage); few accessions also carried resistance to both pathotypes. Association mapping using single nucleotide polymorphism (SNP) markers developed through genotyping by sequencing technique identified 10 quantitative trait loci (QTL) from six C-genome chromosomes to be associated with resistance to these pathotypes; among these, two QTL associated with resistance to 3A and one QTL associated with resistance to 5X L-G2 carried ≥3 SNP markers. The 10 QTL identified in this study individually accounted for 8%–18% of the total phenotypic variance. Thus, the results from this study can be used in molecular breeding of Brassica crops for resistance to this disease.


Sign in / Sign up

Export Citation Format

Share Document