brassica crops
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 53)

H-INDEX

25
(FIVE YEARS 5)

Author(s):  
Alison M. R. Ferrie ◽  
Patricia L. Polowick
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2449
Author(s):  
Pablo Velasco ◽  
Víctor Manuel Rodríguez ◽  
Pilar Soengas ◽  
Jorge Poveda

Brassica crops include important vegetables known as “superfoods” due to the content of phytochemicals of great interest to human health, such as glucosinolates (GSLs) and antioxidant compounds. On the other hand, Trichoderma is a genus of filamentous fungi that includes several species described as biostimulants and/or biological control agents in agriculture. In a previous work, an endophytic strain of Trichoderma hamatum was isolated from kale roots (Brassica oleracea var. acephala), describing its ability to induce systemic resistance in its host plant. In the present work, some of the main leafy Brassica crops (kale, cabbage, leaf rape and turnip greens) have been root-inoculated with T. hamatum, having the aim to verify the possible capacity of the fungus as a biostimulant in productivity as well as the foliar content of GSLs and its antioxidant potential, in order to improve these “superfoods”. The results reported, for the first time, an increase in the productivity of kale (55%), cabbage (36%) and turnip greens (46%) by T. hamatum root inoculation. Furthermore, fungal inoculation reported a significant increase in the content of total GSLs in cabbage and turnip greens, mainly of the GSLs sinigrin and gluconapin, respectively, along with an increase in their antioxidant capacity. Therefore, T. hamatum could be a good agricultural biostimulant in leafy Brassica crops, increasing the content of GSLs and antioxidant potential of great food and health interest.


2021 ◽  
Vol 941 (1) ◽  
pp. 012032
Author(s):  
J D Anteh ◽  
O A Timofeeva ◽  
A A Mostyakova

Abstract Kale is one of the top economically valuable crops in the world because of its high antioxidant content. Research shows that the antioxidant profile of Brassica crops varies with growth stages due to soil fertility, temperature, light and other agronomic factors. This study aimed to analyze the effect of potassium humate on phenolic compound content, the greatest contributor to the antioxidant properties of the highest-ranking superfood kale (Brassica oleracea var. sabellica). Our results showed that potassium humate at different growth stages elicited phenolic compounds in the studied samples. Leaves of 22 weeks old plants accumulated phenolic compounds about two times higher than those of 7 weeks old plants. Vitamin C content was increased by potassium humate treatment at 7 weeks. At 22 weeks levels in controls and treated kale leaves did not significantly differ.


Author(s):  
Qiwei Tang ◽  
Hanhui Kuang ◽  
Changchun Yu ◽  
Guanghui An ◽  
Rong Tao ◽  
...  

Abstract Key message We identified the loss ofBoFLC gene as the cause of non-vernalization requirement inB. oleracea. Our developed codominant marker ofBoFLCgene can be used for breeding program ofB. oleraceacrops. Abstract Many species of the Brassicaceae family, including some Brassica crops, require vernalization to avoid pre-winter flowering. Vernalization is an unfavorable trait for Chinese kale (Brassica oleracea var. chinensis Lei), a stem vegetable, and therefore it has been lost during its domestication/breeding process. To reveal the genetics of vernalization variation, we constructed an F2 population through crossing a Chinese kale (a non-vernalization crop) with a kale (a vernalization crop). Using bulked segregant analysis (BSA) and RNA-seq, we identified one major quantitative trait locus (QTL) controlling vernalization and fine-mapped it to a region spanning 80 kb. Synteny analysis and PCR-based sequencing results revealed that compared to that of the kale parent, the candidate region of the Chinese kale parent lost a 9,325-bp fragment containing FLC homolog (BoFLC). In addition to the BoFLC gene, there are four other FLC homologs in the genome of B. oleracea, including Bo3g005470, Bo3g024250, Bo9g173370, and Bo9g173400. The qPCR analysis showed that the BoFLC had the highest expression among the five members of the FLC family. Considering the low expression levels of the four paralogs of BoFLC, we speculate that its paralogs cannot compensate the function of the lost BoFLC, therefore the presence/absence (PA) polymorphism of BoFLC determines the vernalization variation. Based on the PA polymorphism of BoFLC, we designed a codominant marker for the vernalization trait, which can be used for breeding programs of B. oleracea crops.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jamin Ali ◽  
Anca D. Covaci ◽  
Joe M. Roberts ◽  
Islam S. Sobhy ◽  
William D. J. Kirk ◽  
...  

There is a need to develop new ways of protecting plants against aphid attack. Here, we investigated the effect of a plant defence activator, cis-jasmone (CJ), in a range of cultivars of Brassica napus, Brassica rapa and Brassica oleracea. Plants were sprayed with cis-jasmone or blank formulation and then tested with peach potato aphids (Myzus persicae Sulzer) (Hemiptera: Aphididae) and their parasitoid Diaeretiella rapae (M'Intosh) (Hymenoptera: Braconidae). CJ treated plants had significantly lower aphid settlement than control plants in a settlement bioassay. Conversely, in a foraging bioassay, D. rapae parasitoids spent a significantly longer time foraging on CJ treated plants. Our results reveal that CJ treatment makes plants less attractive to and less suitable for M. persicae but more attractive to D. rapae in a range of brassica cultivars. It is likely that these effects are due to changes in volatile emission indicating activation of defence and presence of conspecific competitors to aphids but presence of prey to parasitoids. Increases in volatile emission were found in CJ induced plants but varied with genotype. Among the synthetic volatile compounds that were induced in the headspace of CJ treated brassica cultivars, methyl isothiocyanate, methyl salicylate and cis-jasmone were most repellent to aphids. These results build on earlier studies in Arabidopsis and show that tritrophic interactions are influenced by CJ in a wide range of brassica germplasm. The implication is that CJ is a promising treatment that could be used in brassica crops as part of an integrated pest management system.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 774
Author(s):  
Sebastian Laurenz ◽  
Rainer Meyhöfer

Aleyrodes proletella causes severe economic damage to several Brassica crops. Its naturally occurring enemies often immigrate late in the season or appear in low numbers on cabbage. This field study aims to permanently increase the local abundance of A. proletella’s natural enemies by providing the non-pest whitefly Aleyrodes lonicerae as an alternative and overwintering host/prey. Therefore, the population dynamics of natural enemies on different perennial herbaceous plants pre-infested with A. lonicerae were determined at two field locations over two winter periods. Most A. lonicerae colonized (on average 166.22 puparia per m²) and overwintered (342.19 adults per m²) on wood avens Geum urbanum. Furthermore, the abundance of A. proletella main parasitoid Encarsia tricolor (28.50 parasitized puparia per m²) and spiders (12.13 per m²) was 3–74 times and 3–14 times higher, respectively, on G. urbanum compared to the other experimental plants. Conclusively, G. urbanum pre-infested with A. lonicerae permanently promoted natural enemies of A. proletella by serving as shelter, reproduction, and overwintering habitat. A potential implementation of G. urbanum in conservation biological control strategies (e.g., tailored flower strips, hedgerows) against A. proletella are discussed and suggestions for future research are given.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1656
Author(s):  
Pari Madloo ◽  
Margarita Lema ◽  
Victor Manuel Rodríguez ◽  
Pilar Soengas

The bacterium Xanthomonas campestris pv. campestris (Xcc) causes black rot disease in Brassica crops. Glucosinolates are known to be part of the defence system of Brassica crops against Xcc infection. They are activated upon pathogen attack by myrosinase enzymes. Their hydrolytic products (GHPs) inhibit the growth of Xcc in vitro. However, the mechanisms underlying this inhibition and the way Xcc can overcome it are not well understood. We studied the transcriptomic reprogramming of Xcc after being supplemented with two chemically different GHPs, one aliphatic isothiocyanate (allyl-ITC) and one indole (indol-3-carbinol), by RNA-seq. Based on our results, the arrest in Xcc growth is related to the need to stop cell division to repair damaged DNA and cell envelope components. Otherwise, GHPs modify energy metabolism by inhibiting aerobic respiration and increasing the synthesis of glycogen. Xcc induces detoxification mechanisms such as the antioxidant defence system and the multidrug efflux system to cope with the toxic effects driven by GHPs. This is the first time that the transcriptomic reprogramming of a plant pathogenic bacterium treated with GHPs has been studied. This information will allow a better understanding of the interaction of a plant pathogen mediated by GSLs.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Huiying Miao ◽  
Wei Zeng ◽  
Jiansheng Wang ◽  
Fen Zhang ◽  
Bo Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document