Reproductive life-history traits of the classical biological control agent Hypena opulenta (Lepidoptera: Erebidae): Using agent biology to support post release monitoring and establishment

2019 ◽  
Vol 135 ◽  
pp. 95-101 ◽  
Author(s):  
M. Lukas Seehausen ◽  
Carla Timm ◽  
Ian M. Jones ◽  
Robert S. Bourchier ◽  
Sandy M. Smith
Author(s):  
Lucie Marquereau ◽  
Jean-Sébastien Cottineau ◽  
Olivier Fontaine ◽  
Frédéric Chiroleu ◽  
Bernard Reynaud ◽  
...  

Abstract Whiteflies are one of the major pests of tomato under greenhouses, and their control partly relies on biocontrol strategies. Among those biocontrol agents, parasitoids or predators are widely used. However, the introduction of a biocontrol agent in a new area is not trivial. For that reason, we investigated the use of a tropical native mirid, Nesidiocoris volucer (Hemiptera: Miridae), for the biological control of whiteflies among other insect pests on tomato crops under greenhouses in the subtropical island of La Réunion, France. Nesidiocoris volucer life history traits and plant injury were examined. Nymphs developed and survived between 15 and 30°C and required on average 49.41 days at 15°C and on average 10.50 days at 30°C to develop (nymph survival >94%). At 25°C, each female produced on average 65 eggs. Nesidiocoris volucer was able to feed on several prey species, but performed better on whiteflies than on spider mites or thrips. No N. volucer feeding injury was observed on tomato. Nesidiocoris volucer has also been found in tropical countries of Africa, and we believe that the data presented on this natural enemy could be of great importance for the biocontrol of whiteflies in tropical areas.


Author(s):  
Fazila Yousuf ◽  
Peter A. Follett ◽  
Conrad P. D. T. Gillett ◽  
David Honsberger ◽  
Lourdes Chamorro ◽  
...  

AbstractPhymastichus coffea LaSalle (Hymenoptera:Eulophidae) is an adult endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera:Curculionidae:Scolytinae), which has been introduced in many coffee producing countries as a biological control agent. To determine the effectiveness of P. coffea against H. hampei and environmental safety for release in Hawaii, we investigated the host selection and parasitism response of adult females to 43 different species of Coleoptera, including 23 Scolytinae (six Hypothenemus species and 17 others), and four additional Curculionidae. Non-target testing included Hawaiian endemic, exotic and beneficial coleopteran species. Using a no-choice laboratory bioassay, we demonstrated that P. coffea was only able to parasitize the target host H. hampei and four other adventive species of Hypothenemus: H. obscurus, H. seriatus, H. birmanus and H. crudiae. Hypothenemus hampei had the highest parasitism rate and shortest parasitoid development time of the five parasitized Hypothenemus spp. Parasitism and parasitoid emergence decreased with decreasing phylogenetic relatedness of the Hypothenemus spp. to H. hampei, and the most distantly related species, H. eruditus, was not parasitized. These results suggest that the risk of harmful non-target impacts is low because there are no native species of Hypothenemus in Hawaii, and P. coffea could be safely introduced for classical biological control of H. hampei in Hawaii.


Sign in / Sign up

Export Citation Format

Share Document