Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration

Biomaterials ◽  
2015 ◽  
Vol 66 ◽  
pp. 67-82 ◽  
Author(s):  
Qing Xie ◽  
Zi Wang ◽  
Yazhuo Huang ◽  
Xiaoping Bi ◽  
Huifang Zhou ◽  
...  
2017 ◽  
Vol 26 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Ah Young Kim ◽  
Yongsun Kim ◽  
Seung Hoon Lee ◽  
Yongseok Yoon ◽  
Wan-Hee Kim ◽  
...  

Osteogenically differentiated cell sheet techniques using mesenchymal stem cells (MSCs) are available to stimulate bone regeneration. The advantage of the cell sheet technique is delivering live cells effectively into the focal region. We developed a novel osteogenic cell sheet technique by adding gelatin to osteogenic cell medium. Gelatin-induced osteogenic cell sheets (GCSs) were compared to conventional osteogenic cell sheets (OCSs). Undifferentiated MSCs (UCs) were used as a control. The morphology of these cell sheets was evaluated microscopically and histologically. The time-dependent cell proliferation rate was estimated by DNA quantification. The expression of osteogenic gene markers and the number of calcium depositions were assessed by quantitative real-time polymerase chain reaction and Alizarin red S (ARS) staining, respectively. GCSs were thicker and stronger than OCSs. GCSs showed a significantly higher cell proliferation rate compared to OCSs ( p < 0.05). GCSs exhibited significantly higher upregulation of BMP-7 mRNA compared to OCSs ( p < 0.05). Both GCSs and OCSs showed negative ARS reactivity on day 10, but only GCSs showed positive ARS reactivity on day 21. With this technique, we observed active cell proliferation with abundant ECM and upregulation of osteogenic bone markers, and our results suggest that GCSs could be promising for therapeutic applications in bone regeneration.


2008 ◽  
Vol 68 (S 01) ◽  
Author(s):  
S Mohr ◽  
BC Portmann-Lanz ◽  
A Schoeberlein ◽  
R Sager ◽  
DV Surbek

2018 ◽  
Vol 55 (4) ◽  
pp. 691-695
Author(s):  
Tudor Sorin Pop ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Klara Brinzaniuc ◽  
Simona Gurzu ◽  
...  

The use of collagen scaffolds and stem cells for obtaining a tissue-engineering complex has been an important concept in promoting repair and regeneration of the bone tissue. Such units represent important steps in the development of an ideal scaffold-cell complex that would sustain new bone apposition. The aim of our study was to perform a histologic evaluation of the healing of critical-sized bone defects, using a biologic collagen scaffold with adipose-derived mesenchymal stem cells, in comparison to negative controls created in the adjacent bone. We used 16 Wistar rats and according to the study design 2 calvarial bone defects were created in each animal, one was filled with collagen seeded with adipose-derived stem cells and the other one was considered negative control. During the following month, at weekly intervals, the animals were euthanized and the specimens from bone defects were histologically evaluated. The results showed that these scaffolds were highly biocompatible as only moderate inflammation no rejection reactions were observed. Furthermore, the first signs of osseous healing appeared after two weeks accompanied by angiogenesis. Collagen scaffolds seeded with adipose-derived mesenchymal stem cells can be considered a promising treatment option in bone regeneration of large defects.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5128-5138
Author(s):  
Ji Li ◽  
Ketao Wang ◽  
Xiaowei Bai ◽  
Qi Wang ◽  
Ningyu Lv ◽  
...  

Porous Ti6AI4V scaffolds incorporated with MSC and PRP are more effective in enhancing the bone regeneration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


2020 ◽  
Author(s):  
Elsa González‐Cubero ◽  
María Luisa González‐Fernández ◽  
Laura Gutiérrez‐Velasco ◽  
Eliezer Navarro‐Ramírez ◽  
Vega Villar‐Suárez

Sign in / Sign up

Export Citation Format

Share Document