craniofacial bone
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 63)

H-INDEX

28
(FIVE YEARS 5)

Author(s):  
Katherine R. Hixon ◽  
Christopher T. Eberlin ◽  
Meghana Pendyala ◽  
Angela Alarcon de la Lastra ◽  
Scott A. Sell
Keyword(s):  

Author(s):  
Sophie Maillard ◽  
Ludovic Sicard ◽  
Caroline Andrique ◽  
Coralie Torrens ◽  
Julie Lesieur ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2993
Author(s):  
Arbi Aghali

Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.


2021 ◽  
Author(s):  
Marley J Dewey ◽  
Derek J Milner ◽  
Daniel Weisgerber ◽  
Colleen L Flanagan ◽  
Marcello Rubessa ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Rashed A. Alsahafi ◽  
Heba Ahmed Mitwalli ◽  
Abdulrahman A. Balhaddad ◽  
Michael D. Weir ◽  
Hockin H. K. Xu ◽  
...  

The management and treatment of dental and craniofacial injuries have continued to evolve throughout the last several decades. Limitations with autograft, allograft, and synthetics created the need for more advanced approaches in tissue engineering. Calcium phosphate cements (CPC) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. This review focuses on the up-to-date performance of calcium phosphate cement (CPC) scaffolds and upcoming promising dental and craniofacial bone regeneration strategies. First, we summarized the barriers encountered in CPC scaffold development. Second, we compiled the most up to date in vitro and in vivo literature. Then, we conducted a systematic search of scientific articles in MEDLINE and EMBASE to screen the related studies. Lastly, we revealed the current developments to effectively design CPC scaffolds and track the enhanced viability and therapeutic efficacy to overcome the current limitations and upcoming perspectives. Finally, we presented a timely and opportune review article focusing on the significant potential of CPC scaffolds for dental and craniofacial bone regeneration, which will be discussed thoroughly. CPC offers multiple capabilities that may be considered toward the oral defects, expecting a future outlook in nanotechnology design and performance.


Author(s):  
Sevda Pouraghaei Sevari ◽  
Jin Koo Kim ◽  
Chider Chen ◽  
Amir Nasajpour ◽  
Cun-Yu Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document