Room at the margins for energy-crops? A qualitative analysis of stakeholder views on the use of marginal land for biomass production in Denmark

2019 ◽  
Vol 123 ◽  
pp. 51-58 ◽  
Author(s):  
O.K. Shortall ◽  
Helle Tegner Anker ◽  
Peter Sandøe ◽  
Christian Gamborg
2020 ◽  
Vol 11 (5) ◽  
pp. 1040
Author(s):  
Maksym KULYK ◽  
Oleksandrr KALYNYCHENKO ◽  
Natalia PRYSHLIAK ◽  
Viktor PRYSHLIAK

The need to study energy crops as an alternative source of energy for providing the population and rural development is justified in the article. In the course of the study, the following methods were used: laboratory – to determine the moisture content in the phytomass, field – to determine the quantitative indicators of plants and biomass productivity, special – to determine the energy and economic efficiency of biomass production. Features of yield formation and yield of dry biomass of energy crops by quantitative indices of plants were determined. The economic and energy efficiency of biomass production, as well as the output of solid biofuel, its energy intensity and energy output have been calculated. A logistic scheme for biomass cultivation including the use and supply of biomass from biomass energy crops (from producer to consumer) has been developed. It has been found that switchgrass and giant miscanthus of the third to fifth year of vegetation form a high yield of dry biomass (up to 15.2 and 18.8 t / ha, respectively) with a maximum level of production profitability - up to 108.6% and 128.1%, provide high indicators of biofuel output (up to 18.2 and 24.0 t / ha) and energy (up to 313.0 and 396.0 GJ / ha) with an average level of energy efficiency coefficient (Kee> 4.5).


2015 ◽  
Vol 72 ◽  
pp. 230-238 ◽  
Author(s):  
Qingyu Feng ◽  
Indrajeet Chaubey ◽  
Young Gu Her ◽  
Raj Cibin ◽  
Bernard Engel ◽  
...  

2018 ◽  
Vol 29 (6) ◽  
pp. 1748-1755 ◽  
Author(s):  
Qingyu Feng ◽  
Indrajeet Chaubey ◽  
Raj Cibin ◽  
Bernard Engel ◽  
K.P. Sudheer ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 131
Author(s):  
Dariusz Kwaśniewski ◽  
Aleksandra Płonka ◽  
Paweł Mickiewicz

This study aimed to assess biomass production costs from perennial energy crops, such as Miscanthus giganteus, Sida hermaphrodita, and coppiced willow, in selected agricultural holdings. This assessment was based on applied technologies for harvesting the biomass of the energy crops mentioned above. The scope of the study included research on ten farms located in Małopolska and establishing the possibility of biomass production from selected energy crops in these entities. Biomass production costs have been estimated using the computer application “Bioalkylation”. The result of the research was the answer to the question: what can be the cost range of biomass production from perennial energy crops for the crops Miscanthus giganteus, Sida hermaphrodita, and coppiced willow as the most popular plants? The study shows that production costs depend primarily on the harvesting technology used and the machinery used in the farm. The harvest with rotary mowers, small presses, and windrows was applied regarding Miscanthus giganteus and Sida hermaphrodita. The costs of biomass production were, on average, 424.7 EUR ha−1 for Miscanthus giganteus and 278.9 EUR ha−1 for Sida hermaphrodita. Concerning tonne, this was 37.6 EUR t−1 for Miscanthus giganteus and 30.0 EUR t−1 for Sida hermaphrodita, respectively. In the case of harvesting energy willow, in the form of whole shoots, inefficient and labour-intensive technologies using chainsaws and combustion cutters were applied. The biomass production costs were thus the highest among the assessed plants and amounted, on average, to 612.1 EUR ha−1, which in terms of tonne corresponded to a value of 30.6 EUR. The obtained results and the analysis presented in the paper may help in planning the cultivation of perennial energy crops in order to obtain biomass used for heating purposes on a farm.


2020 ◽  
Vol 12 (17) ◽  
pp. 6978
Author(s):  
Anna Vatsanidou ◽  
Christos Kavalaris ◽  
Spyros Fountas ◽  
Nikolaos Katsoulas ◽  
Theofanis Gemtos

A three-year experiment was carried out in Central Greece to assess the use of different tillage practices (Conventional, Reduced, and No tillage) for seedbed preparation, in a double cropping per year rotation of irrigated and rainfed energy crops for biomass production for first- and second-generation biofuel production. A life cycle assessment (LCA) study was performed for the first year of crop rotation to evaluate the environmental impact of using different tillage practices, identifying the processes with greater influence on the overall environmental burden (hotspots) and demonstrating the potential environmental benefits from the land management change. LCA results revealed that fertilizer application and diesel fuel consumption, as well as their production stages, were the hot-spot processes for each treatment. In the present study, different tillage treatments compared using mass- and area-based functional unit (FU), revealing that reduced tillage, using strip tillage for spring crop and disc harrow for winter crops, and no tillage treatment had the best environmental performance, respectively. Comparison between the prevailing in the area monoculture cotton crop with the proposed double energy crop rotation adopting conservation tillage practices, using mass and energy value FU, showed that cotton crop had higher environmental impact.


Sign in / Sign up

Export Citation Format

Share Document