Exergy analyses of biogas production from microalgae biomass via anaerobic digestion

2019 ◽  
Vol 289 ◽  
pp. 121709 ◽  
Author(s):  
Chao Xiao ◽  
Qiang Liao ◽  
Qian Fu ◽  
Yun Huang ◽  
Ao Xia ◽  
...  
Author(s):  
Laura Vargas-Estrada ◽  
Adriana Longoria ◽  
Emilio Arenas ◽  
Joel Moreira ◽  
Patrick U. Okoye ◽  
...  

2017 ◽  
Vol 13 (3) ◽  
pp. 18-26 ◽  
Author(s):  
Saad H. Ammar ◽  
Sadiq Riyadh Khodhair

Abstract   Anaerobic digestion process of organic materials is biochemical decomposition process done by two types of digestion bacteria in the absence of oxygen resulting in the biogas production, which is produced as a waste product of digestion. The first type of bacteria is known as acidogenic which converts organic waste to fatty acids. The second type of bacteria is called methane creators or methanogenic which transforms the fatty acids to biogas (CH4 and CO2). The considerable amounts of biodegradable constitutes such as carbohydrates, lipids and proteins present in the microalgae biomass make it a suitable substrate for the anaerobic digestion or even co-digested with other organic wastes. The present work investigated methane biogas production by anaerobic codigestion of microalgae, Chlorella vulgaris biomass with organic waste from several sources such as wastewater sludge and dairy manure waste in different proportions as an additional carbon supply to enhance anaerobic digestion and therefore biogas production. Six bottles, employed as batch biodigesters each of 1 liter capacity, were used for that purpose at moderate conditions (35±2 oC). The produced biogas volume was monitored daily along 35 days and the results showed that the daily and cumulative biogas production was increased 4.5 times and 3 times for the bottles with 66.67% microalgae compared with the bottles with wastewater sludge or dairy manure waste only, respectively.  Keywords: Anaerobic codigestion, biogas; dairy manure, microalgae Chlorella Vulgaris, wastewater sludge.


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


Sign in / Sign up

Export Citation Format

Share Document