Economizing the lignocellulosic hydrolysis process using heterologously expressed auxiliary enzymes feruloyl esterase D (CE1) and β-xylosidase (GH43) derived from thermophilic fungi Scytalidium thermophilum

2021 ◽  
pp. 125603
Author(s):  
Dhruv Agrawal ◽  
Adrian Tsang ◽  
Bhupinder Singh Chadha
1994 ◽  
Vol 60 (2) ◽  
pp. 454-458 ◽  
Author(s):  
Gerben Straatsma ◽  
Robert A. Samson ◽  
Tineke W. Olijnsma ◽  
Huub J. M. Op Den Camp ◽  
Jan P. G. Gerrits ◽  
...  

2016 ◽  
Vol 2016 (3) ◽  
pp. 878-886
Author(s):  
Ester Rus ◽  
Aurelien Perrault ◽  
Nick Mills ◽  
Achame Shana ◽  
Obinna Molokwu ◽  
...  

Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Devi Esteria Hasianna Purba ◽  
Iryanti Eka Suprihatin ◽  
A.A.I.A. Mayun Laksmiwati

Ethanol fermented from potato peels is proposed as one alternative source of renewable energy called bioethanol. In this research bioethanol was produced through four stages namely acid hydrolysis, detoxification, fermentation and distillation. The acid hydrolysis process was carried out using sulphuric acid at 100oC for 60 minutes. The detoxification process was carried out by adding NH4OH into the hydrolyzate prior to fermentation. Distillation was performed up to 100oC and the distillate with the BP of 78-84oC was determined for its ethanol content using gas chromatography. The ethanol produced from 5 grams of dried potato peels through fermentation for 4, 5, 6, and 7 days 3.54%; 4,85%; 5,35%; and 6.15% respectively.


2021 ◽  
Vol 1858 (1) ◽  
pp. 012088
Author(s):  
Didi Dwi Anggoro ◽  
Luqman Buchori ◽  
Mohamad Djaeni ◽  
Ratnawati ◽  
Diah Susetyo Retnowati ◽  
...  

2021 ◽  
pp. 0734242X2110291
Author(s):  
Benjamin Piribauer ◽  
Andreas Bartl ◽  
Wolfgang Ipsmiller

Recently, textiles and their end-of-life management have become the focus of public and political attention. In the European Union the revised waste framework directive defines textiles as municipal waste and stipulates their separate collection by 2025. In the context of these developments, this paper summarises briefly the current state-of-the-art in textile recycling. It is evident that recycling methods are not yet fully developed. This is especially the case with multi-material textiles, which are composed of two or more polymers that are incompatible for recycling. In the practical part of the communication, results are presented which show that enzymatic hydrolysis is a suitable process for recycling textiles made of cotton and polyester. After a complete removal of cotton, the remaining pure polyester fibres undergo a re-granulation and post-condensation step. The so obtained recycled polyester is fed back into the textile processing chain and finally towels are obtained. The main steering parameters of the enzymatic hydrolysis process are described. The study proves that solutions in accordance with the Circular Economy in the textile sector are available but an industrial implementation has not yet been realised.


Sign in / Sign up

Export Citation Format

Share Document