Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization and fermentation optimization

2021 ◽  
pp. 125650
Author(s):  
Sulogna Chatterjee ◽  
S. Venkata Mohan
Fermentation ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 103 ◽  
Author(s):  
Konstantin Bellut ◽  
Maximilian Michel ◽  
Martin Zarnkow ◽  
Mathias Hutzler ◽  
Fritz Jacob ◽  
...  

Non-alcoholic beer (NAB) is enjoying growing demand and popularity due to consumer lifestyle trends and improved production methods. In recent years in particular, research into the application of non-Saccharomyces yeasts to produce NAB via limited fermentation has gained momentum. Non-Saccharomyces yeasts are known to produce fruity aromas, owing to a high ester production. This trait could be harnessed to mask the often-criticized wort-like off-flavor of NAB produced via limited fermentation. Six Cyberlindnera strains were characterized and screened in wort extract. Four of the six strains produced a pleasant, fruity aroma while exhibiting low ethanol production. The strain Cyberlindnera subsufficiens C6.1 was chosen for fermentation optimization via response surface methodology (RSM) and a pilot-scale (60 L) brewing trial with subsequent sensory evaluation. A low fermentation temperature and low pitching rate enhanced the fruitiness and overall acceptance of the NAB. The NAB (0.36% ABV) produced on pilot-scale was significantly more fruity and exhibited a significantly reduced wort-like off-flavor compared to two commercial NABs. This study demonstrated the suitability of Cyberlindnera subsufficiens to produce a fruity NAB, which can compete with commercial NABs. The outcome strengthens the position of non-Saccharomyces yeasts as a serious and applicable alternative to established methods in NAB brewing.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


1981 ◽  
Author(s):  
M. HOLDEN ◽  
A. SHEKAR ◽  
T. SMITH
Keyword(s):  

2013 ◽  
Vol 19 (6) ◽  
pp. 997
Author(s):  
Baihong LIU ◽  
Juan ZHANG ◽  
Zhen FANG ◽  
Wentao LIU ◽  
Guocheng DU ◽  
...  

2010 ◽  
Vol 2009 (3) ◽  
pp. 405-409
Author(s):  
Naikun SHEN ◽  
Hai ZHAO ◽  
Mingzhe GAN ◽  
Yanling JIN ◽  
Lingling ZHOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document