Determination of the influence of size and position of knots on load capacity and stress distribution in timber beams of Pinus sylvestris using finite element model

2013 ◽  
Vol 114 (3) ◽  
pp. 214-222 ◽  
Author(s):  
Vanessa Baño ◽  
Francisco Arriaga ◽  
Manuel Guaita
2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


Author(s):  
V. Ramamurti ◽  
D. A. Subramani ◽  
K. Sridhara

Abstract Stress analysis and determination of eigen pairs of a typical turbocharger compressor impeller have been carried out using the concept of cyclic symmetry. A simplified model treating the blade and the hub as isolated elements has also been attempted. The limitations of the simplified model have been brought out. The results of the finite element model using the cyclic symmetric approach have been discussed.


2020 ◽  
Vol 102 (3) ◽  
pp. 1513-1520
Author(s):  
Jorge Rafael González-Teodoro ◽  
Enrique Romero-Cadaval ◽  
Rafael Asensi ◽  
Vladimir Kindl

2014 ◽  
Vol 875-877 ◽  
pp. 524-528
Author(s):  
Sofiane Guessasma ◽  
Mohameden Hbib ◽  
David Bassir

This paper aims at studying the effect of interfacial damage on the mechanical behavior of starch - hemp composite. The procedure encompasses an experimental investigation towards the determination of microstructural features and mechanical testing of the material. A finite element model is developed to account for a particular damage kinetics that triggers failure properties. Our results show that the experimental evidence of interfacial damage driven failure is achieved. Finite element model is able to capture this feature using an abrupt damage criterion. But in order to identify the observed behavior, the experimental response is matched with the numerical one. This process tunes the mechanical parameters to fit the experimental response. The optimization process conducted in this way leads to a precise determination of the mechanical parameters that quantifies the observed ultimate properties.


Author(s):  
Lili Zhang ◽  
Tingli Xie ◽  
Jiexiang Hu ◽  
Ping Jiang ◽  
Jasuk Koo ◽  
...  

Abstract In this study, an additive scaling function based multi-fidelity (ASF-MF) surrogate model is constructed to fast predict fatigue life as well as the stress distribution for the welded single lap joint. The influence of leg length, leg height, the width of the specimen and load in the fatigue test are taken into consideration. In the construction of the MF surrogate model, the finite element model that is calibrated with the experiment is chosen as the high-fidelity (HF) model. While the finite element model that is not calibrated with the experiment is considered as the low-fidelity (LF) model, aiming to capture the trend of the HF model. The Leave-one-out (LOO) verification method is utilized to compare the prediction performance of the ASF-MF surrogate model with that of the single-fidelity Kriging surrogate model. Results show that the ASF-MF surrogate model can better predict the fatigue life as well as the stress distribution.


Sign in / Sign up

Export Citation Format

Share Document