Multi-Fidelity Surrogate Model-Assisted Fatigue Analysis of Welded Joints

Author(s):  
Lili Zhang ◽  
Tingli Xie ◽  
Jiexiang Hu ◽  
Ping Jiang ◽  
Jasuk Koo ◽  
...  

Abstract In this study, an additive scaling function based multi-fidelity (ASF-MF) surrogate model is constructed to fast predict fatigue life as well as the stress distribution for the welded single lap joint. The influence of leg length, leg height, the width of the specimen and load in the fatigue test are taken into consideration. In the construction of the MF surrogate model, the finite element model that is calibrated with the experiment is chosen as the high-fidelity (HF) model. While the finite element model that is not calibrated with the experiment is considered as the low-fidelity (LF) model, aiming to capture the trend of the HF model. The Leave-one-out (LOO) verification method is utilized to compare the prediction performance of the ASF-MF surrogate model with that of the single-fidelity Kriging surrogate model. Results show that the ASF-MF surrogate model can better predict the fatigue life as well as the stress distribution.

2011 ◽  
Vol 221 ◽  
pp. 472-477
Author(s):  
Zhi Min Fan ◽  
Guang Ting Zhou ◽  
Jian Ping Liu

The finite element model of the stirring kneader shaft was built by PRO/E software, which was inserted into ANSYS. Next, the instantaneous dynamic analysis of the new stirring kneader shaft was carried out. The instantaneous dynamic response of stirring shaft about the exciting force of fluid was obtained, which was to optimize the structural parameters of the stirring shaft. The foundation for the next fatigue analysis was laid based on the instantaneous dynamic response; the fatigue life of stirring kneader shaft can be predicted.


2014 ◽  
Vol 578-579 ◽  
pp. 917-920
Author(s):  
Jiang Hua Lv ◽  
Jia Peng Shi ◽  
Wei Hua Zhu ◽  
Feng Zhu ◽  
Chang Yan

In this paper, using the finite element method,check for the Ken Swart project sand flushing water all operating tower in static stability. First of all, select unit and a calculation model, establish the finite element model; Then analys the displacement distribution and stress distribution of the structure in the five conditions.


2011 ◽  
Vol 383-390 ◽  
pp. 2880-2882
Author(s):  
Wei Liu ◽  
Cong Ling Wang ◽  
Dan Jiang

Builds finite element model of a small pneumatic cylinder based on ANSYS, deals with the prets179, analyses the stress distribution character of a small pneumatic cylinder .Lastly, the calculation is compared with the test. It is shown that the finite element model of a small pneumatic cylinder with bolt pretension is agreed with the actual situation of cylinder.


Author(s):  
В. В. Борисов ◽  
В. В. Сухов

One of the main problems, which solved during the design of transport category aircraft, is problem of analysis of the stress distribution in the strengthened fuselage frames structure. Existing integral methods of stress analysis does not allow for the mutual influence of the deformation of a large number of elements. The most effective method of solving the problem of analysis of deformations influence on the stress distribution of structure is finite element method, which is a universal method for analyzing stress distribution arbitrary constructions.This article describes the features of the finite element model synthesis of the strengthened fuselage frames structure of the aircraft fuselage transport category. It is shown that the finite element model of strengthened frames can be synthesized by attaching additional finite element models of the reinforcing elements to the base finite element model which is built by algorithm which is developed for normal frame. For each reinforcing element developed a separate class of finite element model synthesis algorithm. The method of synthesis of finite element model of strengthened frame, which are described in this article, developed for object-oriented information technology implemented in an object-oriented data management system "SPACE".Finite-element models of the reinforcing elements are included in the finite element model of the fuselage box after the formation of a regular finite element model of the fuselage box. As the source data for the synthesis of finite element models of the reinforcing elements used the coordinates of the boundary sections nodes of existing finite element models of conventional frames.Reinforcing elements belong to the group of irregular structural elements that connect regular elements of the cross set with different elements that are not intended for the perception and transmission of loads. The only exceptions are the vertical amplification increasing the stiffness of  frames in a direction parallel to the axis OY.Source data input for the synthesis of finite element models of the reinforcing elements can occur only through the individual user interfaces that supported by objects of the corresponding classes. Structure of user interfaces depends on the number and type of additional data that required for the synthesis of finite element models of the reinforcing elements. For example, for the synthesis of structures of finite element models of horizontal beams that support the floor of cargo cabin, you must specify the distance between the upper surface of the beam and the horizontal axis of the fuselage, as well as the height of the beam section. For the synthesis of the structure of the finite element model of vertical reinforcing element is enough to specify the distance between the its inner belt and the a vertical axis of symmetry of the fuselage.And in both cases you must to specify a reference to the basic finite element model, by selecting from a list of frame designations. List of frames, as well as links to objects containing the appropriate finite-element models, must be transmitted from an object which references to the level of decomposition, in which the general model of the fuselage box is created.Finite-element models of the reinforcing elements include two groups of nodes. The first group is taken from an array of nodes, which is transmitted from the base finite element model. The second group is formed by the synthesis algorithm of finite element model of the selected class reinforcing element. Therefore, the synthesis of finite element models of the reinforcing elements starts with the formation of their local model versions. On the basis of these models are formed temporary copies, which are transmitted to the general finite element model of the box. This should be considered when developing of data conversion algorithm of data copying from a local finite element model to the temporary copy.Based on this analysis, we can conclude that this method improves the quality of the design of the aircraft fuselage, increasing the amount of structure variant number and reduce the likelihood of errors.


2019 ◽  
Vol 275 ◽  
pp. 02014
Author(s):  
Xi-Zhi Wu ◽  
Wei-Kang Yang ◽  
Xian-Guo Zang

This paper presents fatigue property of CFRP-strengthened cracked steel plate. Firstly, the finite element model of CFRP-strengthened cracked steel plate is established by using the cohesive zone model. With the finite element model, stress intensity factor of the crack-tipis calculated. Then, it gives the fatigue tests of cracked steel plate. According to the experimental data, the material constants C and n value sare obtained. The prediction fatigue life is calculated by the finite element model and Paris function and verified by the experimental data. The results show that the prediction fatigue life, calculated by the finite element model and the Paris formula, is consistent with the experimental fatigue life, which verifies the accuracy of our prediction model with finite element model and the Paris function.


2011 ◽  
Vol 179-180 ◽  
pp. 186-191 ◽  
Author(s):  
Mao Tao Zhu ◽  
Zhong Wang ◽  
Wei Wei Zhang

Applying the method of finite element analysis, the finite element model of sub-frame of an automobile was built. With the aid of MSC software, longitudinal force operating mode which was pre-verified to be the most critical mode, was chosen for the static strength analysis and fatigue life simulation analysis of the sub-frame. Then the stress and fatigue life nephograms of the sub-frame were gotten. Comparison between finite element analysis and experiment result indicated that the finite element model can practically and properly reflect the real stress distribution of the sub-frame. Finally, based on this finite element model, some structure optimizations were done. After structure optimizations, the stress level was obviously improved. This method of FEA simulation together with experimental verification, significantly reduces the development cycle of new products, and is of important value in product design and quality improvement.


2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

Conical picks are the key cutting components used on roadheaders, and they are replaced frequently because of the bad working conditions. Picks did not meet the fatigue life when they were damaged by abrasion, so the pick fatigue life and strength are excessive. In the paper, in order to reduce the abrasion and save the materials, structure optimization was carried out. For static analysis and fatigue life prediction, the simulation program was proposed based on mathematical models to obtain the cutting resistance. Furthermore, the finite element models for static analysis and fatigue life analysis were proposed. The results indicated that fatigue life damage and strength failure of the cutting pick would never happen. Subsequently, the initial optimization model and the finite element model of picks were developed. According to the optimized results, a new type of pick was developed based on the working and installing conditions of the traditional pick. Finally, the previous analysis methods used for traditional methods were carried out again for the new type picks. The results show that new type of pick can satisfy the strength and fatigue life requirements.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


Sign in / Sign up

Export Citation Format

Share Document