Carbonic anhydrase inhibitors: The X-ray crystal structure of ethoxzolamide complexed to human isoform II reveals the importance of thr200 and gln92 for obtaining tight-binding inhibitors

2008 ◽  
Vol 18 (8) ◽  
pp. 2669-2674 ◽  
Author(s):  
Anna Di Fiore ◽  
Carlo Pedone ◽  
Jochen Antel ◽  
Harald Waldeck ◽  
Andreas Witte ◽  
...  
2015 ◽  
Vol 11 ◽  
pp. 1129-1135 ◽  
Author(s):  
Leander Simon Runtsch ◽  
David Michael Barber ◽  
Peter Mayer ◽  
Michael Groll ◽  
Dirk Trauner ◽  
...  

Aryl sulfonamides are a widely used drug class for the inhibition of carbonic anhydrases. In the context of our program of photochromic pharmacophores we were interested in the exploration of azobenzene-containing sulfonamides to block the catalytic activity of human carbonic anhydrase II (hCAII). Herein, we report the synthesis and in vitro evaluation of a small library of nine photochromic sulfonamides towards hCAII. All molecules are azobenzene-4-sulfonamides, which are substituted by different functional groups in the 4´-position and were characterized by X-ray crystallography. We aimed to investigate the influence of electron-donating or electron-withdrawing substituents on the inhibitory constant K i. With the aid of an hCAII crystal structure bound to one of the synthesized azobenzenes, we found that the electronic structure does not strongly affect inhibition. Taken together, all compounds are strong blockers of hCAII with K i = 25–65 nM that are potentially photochromic and thus combine studies from chemical synthesis, crystallography and enzyme kinetics.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Pavel Mader ◽  
Adam Pecina ◽  
Petr Cígler ◽  
Martin Lepšík ◽  
Václav Šícha ◽  
...  

Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.


Sign in / Sign up

Export Citation Format

Share Document