Main Group Metal Chemistry
Latest Publications


TOTAL DOCUMENTS

1546
(FIVE YEARS 80)

H-INDEX

19
(FIVE YEARS 3)

Published By Walter De Gruyter Gmbh

2191-0219, 0792-1241

2021 ◽  
Vol 45 (1) ◽  
pp. 1-10
Author(s):  
Davood Ghanbari ◽  
Samaneh BandehAli ◽  
Abdolreza Moghadassi

Abstract In this study, three types of ferrites nanoparticles including CoFe2O4, NiFe2O4, and ZnFe2O4 were synthesized by microwave-assisted hydrothermal method. The X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) were employed to analyze synthesized nanoparticles and fabricated membranes. The morphology of membrane surface was investigated by surface images. The ability of ferrite nanoparticles was evaluated to the separation of sodium salt and heavy metals such as Cr2+, Pb2+, and Cu2+ from aqueous solutions. The modified membrane showed the enhancement of membrane surface hydrophilicity, porosity, and mean pore size. The results revealed a significant increase in pure water flux: 152.27, 178, and 172.68 L·m−2·h−1 for PES/0.001 wt% of CoFe2O4, PES/0.001 wt% NiFe2O4, and PES/0.001 wt% ZnFe2O4 NPs, respectively. Moreover, Na2SO4 rejection was reached 78% at 0.1 wt% of CoFe2O4 NPs. The highest Cr (II) rejection obtained 72% for PES/0.001 wt% of NiFe2O4 NPs while it was 46% for the neat PES membrane. The Pb(II) rejection reached above 75% at 0.1 wt% of CoFe2O4 NPs. The Cu(II) rejection was obtained 75% at 0.1 wt% of CoFe2O4 NPs. The ferrite NPs revealed the high potential of heavy metal removal in the filtration membranes.


2021 ◽  
Vol 44 (1) ◽  
pp. 261-266
Author(s):  
Ancuța Covaci ◽  
Cristian Silvestru ◽  
Anca Silvestru

Abstract The reaction between CdCl2 and PPh2{C6H4 [CH2N(CH2CH2)2O]-2} (1) in a 1:1 molar ratio resulted in the cadmium(II) complex CdCl2[PPh2{C6H4[CH2N(CH2CH2)2O]-2}] (2). The complex 2 was characterized in solution by NMR spectroscopy (1H, 13C, and 31P). Single-crystal X-ray diffraction studies revealed no intramolecular N→P interaction in 1. The phosphane ligand behaves as a P,N chelating moiety in the cadmium complex 2, thus resulting in a species containing distorted tetrahedral environments around cadmium and phosphorus. Short intermolecular interactions CH‧‧‧π aryl and CH‧‧‧O in 1 and CH‧‧‧π aryl and CH‧‧‧Cl in 2 resulted in supramolecular networks.


2021 ◽  
Vol 44 (1) ◽  
pp. 117-128
Author(s):  
Muhammad Kamran Siddiqui ◽  
Yu-Ming Chu ◽  
Muhammad Nasir ◽  
Murat Cancan

Abstract Porous materials, for example, metalnatural structures (MOFs) and their discrete partners metalnatural polyhedra (MOPs), that are built from coordinatively unsaturated inorganic hubs show incredible potential for application in gas adsorption/partition cycles, catalysis, and arising openings in hardware, optics, detecting, and biotechnology. A well-known hetero-bimetallic metalorganic polyhedra of this discrete partners metalnatural polyhedra (MOPs) class is cuboctahedral bi-metallic stricture. In this paper, we discuss the stricture of Hetero-bimetallic metalorganic polyhedra (cuboctahedral bi-metallic). Also, we computed the topological indices based on the degree of atoms in this cuboctahedral bi-metallic structure.


2021 ◽  
Vol 44 (1) ◽  
pp. 213-217
Author(s):  
Waly Diallo ◽  
Hélène Cattey ◽  
Laurent Plasseraud

Abstract Crystallization of [(Ph3Sn)2SeO4] ⋅ 1.5H2O in methanol leads to the formation of [{(Ph3Sn)2SeO4} ⋅ CH3OH] n (1) which constitutes a new specimen of organotin(IV) selenate derivatives. In the solid state, complex 1 is arranged in polymeric zig-zag chains, composed of alternating Ph3Sn and SeO4 groups. In addition, pendant Ph3Sn ⋅ CH3OH moieties are branched along chains according to a syndiotactic organization and via Sn-O-Se connections. From a supramolecular point of view, intermolecular hydrogen bonds established between the selenate groups (uncoordinated oxygen) and the hydroxyl functions (CH3OH) of the pendant groups link the chains together.


2021 ◽  
Vol 44 (1) ◽  
pp. 194-202
Author(s):  
Funda Demir ◽  
Meral Yildirim Ozen ◽  
Emek Moroydor Derun

Abstract In this study, essential (Ca, Cr, Cu, Fe, K, Mg, Na, P, Zn), and non-essential (Al, Ni, Pb) element contents of the drinking and baby water samples which are sold in the local market and tap water samples in Istanbul were examined. It was determined that elements of Cr, Cu, Fe, P, Zn, Al, and Ni were below detection limits in all water samples. Among the non-essential elements analyzed in water samples, Pb was the only detected element. At the same time, the percentages that meet the daily element requirements of infants were also calculated. As a result of the evaluations made, there is no significant difference in infant nutrition between baby waters and other drinking waters in terms of the element content.


2021 ◽  
Vol 44 (1) ◽  
pp. 129-140
Author(s):  
Agha Kashif ◽  
Sumaira Aftab ◽  
Muhammad Javaid ◽  
Hafiz Muhammad Awais

Abstract Topological index (TI) is a numerical invariant that helps to understand the natural relationship of the physicochemical properties of a compound in its primary structure. George Polya introduced the idea of counting polynomials in chemical graph theory and Winer made the use of TI in chemical compounds working on the paraffin's boiling point. The literature of the topological indices and counting polynomials of different graphs has grown extremely since that time. Metal-organic network (MON) is a group of different chemical compounds that consist of metal ions and organic ligands to represent unique morphology, excellent chemical stability, large pore volume, and very high surface area. Working on structures, characteristics, and synthesis of various MONs show the importance of these networks with useful applications, such as sensing of different gases, assessment of chemicals, environmental hazard, heterogeneous catalysis, gas and energy storage devices of excellent material, conducting solids, super-capacitors and catalysis for the purification, and separation of different gases. The above-mentioned properties and physical stability of these MONs become a most discussed topic nowadays. In this paper, we calculate the M-polynomials and various TIs based on these polynomials for two different MONs. A comparison among the aforesaid topological indices is also included to represent the better one.


2021 ◽  
Vol 44 (1) ◽  
pp. 267-269
Author(s):  
Muhammad Javaid ◽  
Muhammad Imran

Abstract The topic of computing the topological indices (TIs) being a graph-theoretic modeling of the networks or discrete structures has become an important area of research nowadays because of its immense applications in various branches of the applied sciences. TIs have played a vital role in mathematical chemistry since the pioneering work of famous chemist Harry Wiener in 1947. However, in recent years, their capability and popularity has increased significantly because of the findings of the different physical and chemical investigations in the various chemical networks and the structures arising from the drug designs. In additions, TIs are also frequently used to study the quantitative structure property relationships (QSPRs) and quantitative structure activity relationships (QSARs) models which correlate the chemical structures with their physio-chemical properties and biological activities in a dataset of chemicals. These models are very important and useful for the research community working in the wider area of cheminformatics which is an interdisciplinary field combining mathematics, chemistry, and information science. The aim of this editorial is to arrange new methods, techniques, models, and algorithms to study the various theoretical and computational aspects of the different types of these topological indices for the various molecular structures.


2021 ◽  
Vol 44 (1) ◽  
pp. 239-242
Author(s):  
Yu Song ◽  
Yu Yan ◽  
Hua Zhang ◽  
Xiuyan Wang

Abstract A new metal-organic coordination polymer, [Pb(L)(adip)0.5] (1) was synthesized under hydrothermal conditions by using 1-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)naphthalen-2-ol (HL) and adipic acid (H2adip). The complex 1 was characterized by diffraction and elemental analyses. In complex 1, the binuclear [Pb2L2] units were formed by the OH-deprotonation bridging neighboring Pb(II) atoms, and the adipate linked the binuclear [Pb2L2] units to form a symmetric one-dimensional chain. The 1D chain was further extended to the 2D supramolecular layer structure through π-π interactions between the L ligands.


2021 ◽  
Vol 44 (1) ◽  
pp. 270-280
Author(s):  
Milan Melník ◽  
Peter Mikuš

Abstract We report herein structural characterization of monomeric platinum complexes of the composition: Pt(η4–P4L), Pt(η4–P3SiL), Pt(η4–P2N2L), Pt(η4–P2S2L), Pt(η4–P2C2L), Pt(η4–PN3L), and Pt(η4–PN2OL). The tetradentate ligands with 10-, 11-, 12-, 14-, and 16-membered macrocycles create a variety of chelate bond angles. A distorted square-planar geometry about Pt(II) atoms with cis–configuration by far prevail. There is an example Pt(η4–P3SiL) in which the respective donor atoms build up a trigonal-pyramidal geometry about Pt(II) atom.


2021 ◽  
Vol 44 (1) ◽  
pp. 256-260
Author(s):  
Sutopo Hadi ◽  
Mona Dwi Fenska ◽  
Noviany Noviany ◽  
Heri Satria ◽  
Wasinton Simanjuntak ◽  
...  

Abstract This paper presents antimalarial activity of several triphenyltin(IV) aminobenzoate compounds synthesized from the reaction of triphenyltin(IV) hydroxide with 2-, 3-, and 4-aminobenzoic acid. The activity of the compounds as anti-malaria agents was evaluated using Plasmodium falciparum, and demonstrated that the compounds have about the same IC50 with that of chloroquine (2×10−3 μg/mL) applied as the positive control. The result also showed that the Plasmodium is non-resistent to the compounds synthesized, which is the opposite to chloroquine.


Sign in / Sign up

Export Citation Format

Share Document