Carbonic Anhydrase Inhibitors:  Stacking with Phe131 Determines Active Site Binding Region of Inhibitors As Exemplified by the X-ray Crystal Structure of a Membrane-Impermeant Antitumor Sulfonamide Complexed with Isozyme II

2005 ◽  
Vol 48 (18) ◽  
pp. 5721-5727 ◽  
Author(s):  
Valeria Menchise ◽  
Giuseppina De Simone ◽  
Vincenzo Alterio ◽  
Anna Di Fiore ◽  
Carlo Pedone ◽  
...  
2015 ◽  
Vol 51 (2) ◽  
pp. 302-305 ◽  
Author(s):  
Katia D'Ambrosio ◽  
Simone Carradori ◽  
Simona M. Monti ◽  
Martina Buonanno ◽  
Daniela Secci ◽  
...  

2-Benzylsulfinylbenzoic acid binds to human carbonic anhydrase II in a mode completely different from any other class of carbonic anhydrase inhibitors investigated so far.


2005 ◽  
Vol 15 (7) ◽  
pp. 1937-1942 ◽  
Author(s):  
Anna Di Fiore ◽  
Giuseppina De Simone ◽  
Valeria Menchise ◽  
Carlo Pedone ◽  
Angela Casini ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2418
Author(s):  
Zuo-Peng Zhang ◽  
Ze-Fa Yin ◽  
Jia-Yue Li ◽  
Zhi-Peng Wang ◽  
Qian-Jie Wu ◽  
...  

To find novel human carbonic anhydrase (hCA) inhibitors, we synthesized thirteen compounds by combining thiazolidinone with benzenesulfonamide. The result of the X-ray single-crystal diffraction experiment confirmed the configuration of this class of compounds. The enzyme inhibition assays against hCA II and IX showed desirable potency profiles, as effective as the positive controls. The docking studies revealed that compounds (2) and (7) efficiently bound in the active site cavity of hCA IX by forming sufficient interactions with active site residues. The fragment of thiazolidinone played an important role in the binding of the molecules to the active site.


Author(s):  
Taichi Mizobuchi ◽  
Risako Nonaka ◽  
Motoki Yoshimura ◽  
Katsumasa Abe ◽  
Shouji Takahashi ◽  
...  

Aspartate racemase (AspR) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90 Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the β-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.


2004 ◽  
Vol 57 (5) ◽  
pp. 415 ◽  
Author(s):  
Jason Dang ◽  
B. Mikael Bergdahl ◽  
Frances Separovic ◽  
Robert T. C. Brownlee ◽  
Robert P. Metzger

The conformation of virginiamycin M1 (VM1) in chloroform, determined by high-resolution NMR experiments, differs significantly from that of the X-ray crystal structure of VM1 bound to the 50S ribosome and to the active site of a streptogramin acetyltransferase enzyme. This implies that the binding process to these entities causes a major change in VM1 conformation.


Sign in / Sign up

Export Citation Format

Share Document