scholarly journals A novel synonymous variant in exon 1 of GNAS gene results in a cryptic splice site and causes pseudohypoparathyroidism type 1A and pseudo-pseudohypoparathyroidism in a French family

Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 101073
Author(s):  
Andreea Apetrei ◽  
Arnaud Molin ◽  
Nicolas Gruchy ◽  
Manon Godin ◽  
Claire Bracquemart ◽  
...  
2002 ◽  
Vol 47 (12) ◽  
pp. 0665-0676 ◽  
Author(s):  
D. M. Dunn ◽  
T. Ishigami ◽  
J. Pankow ◽  
A. von Niederhausern ◽  
J. Alder ◽  
...  

1998 ◽  
Vol 83 (10) ◽  
pp. 3604-3608
Author(s):  
Gisah A. Carvalho ◽  
Roy E. Weiss ◽  
Samuel Refetoff

Fourteen T4-binding globulin (TBG) variants have been identified at the gene level. They are all located in the coding region of the gene and 6 produce complete deficiency of TBG (TBG-CD). We now describe the first mutation in a noncoding region producing TBG-CD. The proband was treated for over 20 yr with L-T4 because of fatigue associated with a low concentration of serum total T4. Fifteen family members were studied showing low total T4 inherited as an X chromosome-linked trait, and affected males had undetectable TBG in serum. Sequencing of the entire coding region and promoter of the TBG gene revealed no abnormality. However, an A to G transition was found in the acceptor splice junction of intron II that produced a new HaeIII restriction site cosegregating with the TBG-CD phenotype. Sequencing exon 1 to exon 3 of TBG complementary DNA reverse transcribed from messenger RNA of skin fibroblasts from an affected male, confirmed a shift in the ag acceptor splice site. This results in the insertion of a G in exon 2 and causes a frameshift and a premature stop at codon 195. This early termination of translation predicts a truncated TBG lacking 201 amino acids.


1997 ◽  
Vol 133 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Attilla Nemeth-Slany ◽  
Phillipa Talmud ◽  
Scott M Grundy ◽  
Shailendra B Patel

2021 ◽  
Vol 22 (24) ◽  
pp. 13248
Author(s):  
John G. Conboy

A translationally silent single nucleotide mutation in exon 44 (E44) of the von Willebrand factor (VWF) gene is associated with inefficient removal of intron 44 in a von Willebrand disease (VWD) patient. This intron retention (IR) event was previously attributed to reordered E44 secondary structure that sequesters the normal splice donor site. We propose an alternative mechanism: the mutation introduces a cryptic splice donor site that interferes with the function of the annotated site to favor IR. We evaluated both models using minigene splicing reporters engineered to vary in secondary structure and/or cryptic splice site content. Analysis of splicing efficiency in transfected K562 cells suggested that the mutation-generated cryptic splice site in E44 was sufficient to induce substantial IR. Mutations predicted to vary secondary structure at the annotated site also had modest effects on IR and shifted the balance of residual splicing between the cryptic site and annotated site, supporting competition among the sites. Further studies demonstrated that introduction of cryptic splice donor motifs at other positions in E44 did not promote IR, indicating that interference with the annotated site is context dependent. We conclude that mutant deep exon splice sites can interfere with proper splicing by inducing IR.


Sign in / Sign up

Export Citation Format

Share Document