scholarly journals Visualization of Recombinational DNA Repair at the Single-Molecule Level

2009 ◽  
Vol 96 (3) ◽  
pp. 553a
Author(s):  
Stephen Kowalczykowski
2013 ◽  
Vol 52 (30) ◽  
pp. 7747-7750 ◽  
Author(s):  
Maria Tintoré ◽  
Isaac Gállego ◽  
Brendan Manning ◽  
Ramon Eritja ◽  
Carme Fàbrega

2013 ◽  
Vol 125 (30) ◽  
pp. 7901-7904 ◽  
Author(s):  
Maria Tintoré ◽  
Isaac Gállego ◽  
Brendan Manning ◽  
Ramon Eritja ◽  
Carme Fàbrega

2019 ◽  
Vol 47 (16) ◽  
pp. 8521-8536 ◽  
Author(s):  
Rogelio Hernández-Tamayo ◽  
Luis M Oviedo-Bocanegra ◽  
Georg Fritz ◽  
Peter L Graumann

AbstractDNA replication forks are intrinsically asymmetric and may arrest during the cell cycle upon encountering modifications in the DNA. We have studied real time dynamics of three DNA polymerases and an exonuclease at a single molecule level in the bacterium Bacillus subtilis. PolC and DnaE work in a symmetric manner and show similar dwell times. After addition of DNA damage, their static fractions and dwell times decreased, in agreement with increased re-establishment of replication forks. Only a minor fraction of replication forks showed a loss of active polymerases, indicating relatively robust activity during DNA repair. Conversely, PolA, homolog of polymerase I and exonuclease ExoR were rarely present at forks during unperturbed replication but were recruited to replications forks after induction of DNA damage. Protein dynamics of PolA or ExoR were altered in the absence of each other during exponential growth and during DNA repair, indicating overlapping functions. Purified ExoR displayed exonuclease activity and preferentially bound to DNA having 5′ overhangs in vitro. Our analyses support the idea that two replicative DNA polymerases work together at the lagging strand whilst only PolC acts at the leading strand, and that PolA and ExoR perform inducible functions at replication forks during DNA repair.


2020 ◽  
Vol 11 (22) ◽  
pp. 5724-5734
Author(s):  
Chen-chen Li ◽  
Hui-yan Chen ◽  
Juan Hu ◽  
Chun-yang Zhang

Integration of single-molecule detection with rolling circle amplification-driven encoding of different fluorescent molecules enables simultaneous detection of multiple DNA repair enzymes.


Sign in / Sign up

Export Citation Format

Share Document