scholarly journals Block of Na+ Currents and Suppression of Action Potentials in Cultured Hippocampal Neurons by Gs-458967

2014 ◽  
Vol 106 (2) ◽  
pp. 326a
Author(s):  
Ryoko Hirakawa ◽  
Luiz Belardinelli ◽  
Sridharan Rajamani
2001 ◽  
Vol 86 (5) ◽  
pp. 2520-2526 ◽  
Author(s):  
Zhi-Gang Xiong ◽  
Xiang-Ping Chu ◽  
J. F. MacDonald

Concentrations of extracellular calcium ([Ca2+]e) in the CNS decrease substantially during seizure activity. We have demonstrated previously that decreases in [Ca2+]e activate a novel calcium-sensing nonselective cation (csNSC) channel in hippocampal neurons. Activation of csNSC channels is responsible for a sustained membrane depolarization and increased neuronal excitability. Our study has suggested that the csNSC channel is likely involved in generating and maintaining seizure activities. In the present study, the effects of anti-epileptic agent lamotrigine (LTG) on csNSC channels were studied in cultured mouse hippocampal neurons using patch-clamp techniques. At a holding potential of −60 mV, a slow inward current through csNSC channels was activated by a step reduction of [Ca2+]e from 1.5 to 0.2 mM. LTG decreased the amplitude of csNSC currents dose dependently with an IC50 of 171 ± 25.8 (SE) μM. The effect of LTG was independent of membrane potential. In the presence of 300 μM LTG, the amplitude of csNSC current was decreased by 31 ± 3% at −60 mV and 29 ± 2.9% at +40 mV ( P > 0.05). LTG depressed csNSC current without affecting the potency of Ca2+ block of the current (IC50 for Ca2+block of csNSC currents in the absence of LTG: 145 ± 18 μM; in the presence of 300 μM LTG: 136 ± 10 μM. n = 5, P > 0.05). In current-clamp recordings, activation of csNSC channel by reducing the [Ca2+]e caused a sustained membrane depolarization and an increase in the frequency of spontaneous firing of action potentials. LTG (300 μM) significantly inhibited csNSC channel-mediated membrane depolarization and the excitation of neurons. Fura-2 ratiometric Ca2+imaging experiment showed that LTG also inhibited the increase in intracellular Ca2+ concentration induced by csNSC channel activation. The effect of LTG on csNSC channels may partially contribute to its broad spectrum of anti-epileptic actions.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


Sign in / Sign up

Export Citation Format

Share Document