imaging experiment
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 39)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Jiafa Mao ◽  
Weiguo Sheng ◽  
Yahong Hu ◽  
Kejie Mao ◽  
Hua Gao ◽  
...  

Abstract Existing optical theory states that the light directed to the optical center of the convex lens will travel in a straight line. Does the theory hold? If this is true, then why the images formed by the camera lens tends to be distorted? To answer the question, this paper studied the propagation mode of light passing through convex lens. Specifically, assuming the propagation medium on both sides of convex lens is homogeneous, we propose an angular affine transformation (AAT) theory. Based on the proposed theory, we first derive the refractive index of convex lens as well as the method of calculating the normal direction of each point within the radius of convex lens radius and then derive the refraction direction of each point within the radius of convex lens, thus completely characterizing the path diagram of light directed to the optical center. The correctness of the proposed theory has been verified using two sets of experiments: characterization of the route of light passing through the convex lens as well as camera imaging experiment. From the results, it can be concluded that the light directed to the optical center of convex lens does not travel in a straight line, but in a refraction line.


2021 ◽  
Author(s):  
Eloina Corradi ◽  
Walter Boscheri ◽  
Marie-Laure Baudet

Analysis of live-imaging experiments is crucial to decipher a plethora of cellular mechanisms within physiological and pathological contexts. Kymograph, i.e. graphical representations of particle spatial position over time, and single particle tracking (SPT) are the currently available tools to extract information on particle transport and velocity. However, the spatiotemporal approximation applied in particle trajectory reconstruction with those methods intrinsically prevents an accurate analysis of particle kinematics and of instantaneous behaviours. Here, we present SHOT-R, a novel numerical method based on polynomial reconstruction of 4D (3D+time) particle trajectories. SHOT-R, contrary to other tools, computes bona fide instantaneous and directional velocity, and acceleration. Thanks to its high order continuous reconstruction it allows, for the first time, kinematics analysis of co-trafficked particles. Overall, SHOT-R is a novel, versatile, and physically reliable numerical method that achieves all-encompassing particle kinematics studies at unprecedented accuracy on any live-imaging experiment where the spatiotemporal coordinates can be retrieved.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peter Bock ◽  
Martin Felhofer ◽  
Konrad Mayer ◽  
Notburga Gierlinger

The cuticle covers almost all plant organs as the outermost layer and serves as a transpiration barrier, sunscreen, and first line of defense against pathogens. Waxes, fatty acids, and aromatic components build chemically and structurally diverse layers with different functionality. So far, electron microscopy has elucidated structure, while isolation, extraction, and analysis procedures have revealed chemistry. With this method paper, we close the missing link by demonstrating how Raman microscopy gives detailed information about chemistry and structure of the native cuticle on the microscale. We introduce an optimized experimental workflow, covering the whole process of sample preparation, Raman imaging experiment, data analysis, and interpretation and show the versatility of the approach on cuticles of a spruce needle, a tomato peel, and an Arabidopsis stem. We include laser polarization experiments to deduce the orientation of molecules and multivariate data analysis to separate cuticle layers and verify their molecular composition. Based on the three investigated cuticles, we discuss the chemical and structural diversity and validate our findings by comparing models based on our spectroscopic data with the current view of the cuticle. We amend the model by adding the distribution of cinnamic acids and flavonoids within the cuticle layers and their transition to the epidermal layer. Raman imaging proves as a non-destructive and fast approach to assess the chemical and structural variability in space and time. It might become a valuable tool to tackle knowledge gaps in plant cuticle research.


2021 ◽  
Vol 22 (23) ◽  
pp. 12821
Author(s):  
Zhuying Deng ◽  
Huiyan Wu ◽  
Dongyi Li ◽  
Luping Li ◽  
Zhipeng Wang ◽  
...  

Root-derived mobile signals play critical roles in coordinating a shoot’s response to underground conditions. However, the identification of root-to-shoot long-distance mobile signals has been scant. In this study, we aimed to characterize root-to-shoot endogenous mobile miRNAs by using an Arabidopsis/Nicotiana interfamilial heterograft in which these two taxonomically distant species with clear genetic backgrounds had sufficient diversity in differentiating miRNA sources. Small RNA deep sequencing analysis revealed that 82 miRNAs from the Arabidopsis scion could travel through the graft union to reach the rootstock, whereas only a very small subset of miRNA (6 miRNAs) preferred the root-to-shoot movement. We demonstrated in an ex vivo RNA imaging experiment that the root-to-shoot mobile Nb-miR164, Nb-miR395 and Nb-miR397 were targeted to plasmodesmata using the bacteriophage coat protein MS2 system. Furthermore, the Nb-miR164 was shown to move from the roots to the shoots to induce phenotypic changes when its overexpressing line was used as rootstock, strongly supporting that root-derived Nb-miR164 was able to modify the scion trait via its long-distance movement.


2021 ◽  
Author(s):  
Christian Feldhaus ◽  
Martina Kolb ◽  
Michelle Kueppers ◽  
Steffen Hardy ◽  
Ralph Palmisano

One of the most important environmental cues for living organisms is gravity and many developmental processes depend on it. However, when it comes to light microscopy, a majority of studies on these processes work with their objects of interest placed perpendicular to their natural orientation. One reason for that is probably that light microscopes with the required horizontal beampath are either costly or require advanced technical skills. To circumvent these obstacles and make imaging of gravity-dependent processes with a horizontal beampath possible for any lab we developed GraviKit. It converts a standard inverted research microscope into an imaging device with a horizontal beampath with a stage that rotates the sample around the optical axis. Like this, the direction of gravity can be freely chosen during an imaging experiment. The system is easy to implement and suitable for multi-user environments.


Chemosphere ◽  
2021 ◽  
pp. 131698
Author(s):  
Pravalika Butreddy ◽  
Swaroop Chakraborty ◽  
Pushpanjali Soppina ◽  
Rakesh Behera ◽  
Virupakshi Soppina ◽  
...  

2021 ◽  
Vol 490 ◽  
pp. 126892
Author(s):  
Yuanzhi Zhao ◽  
Yahong Li ◽  
Wenjun He ◽  
Yu Liu ◽  
Yuegang Fu

2021 ◽  
Vol 15 ◽  
Author(s):  
Xuanhao Wang ◽  
Yan Luo ◽  
Yuwen Chen ◽  
Chaoyi Chen ◽  
Lu Yin ◽  
...  

Ultrasound and photoacoustic imaging are emerging as powerful tools to study brain structures and functions. The skull introduces significant distortion and attenuation of the ultrasound signals deteriorating image quality. For biological studies employing rodents, craniotomy is often times performed to enhance image qualities. However, craniotomy is unsuitable for longitudinal studies, where a long-term cranial window is needed to prevent repeated surgeries. Here, we propose a mouse model to eliminate sound blockage by the top portion of the skull, while minimum physiological perturbation to the imaged object is incurred. With the new mouse model, no craniotomy is needed before each imaging experiment. The effectiveness of our method was confirmed by three imaging systems: photoacoustic computed tomography, ultrasound imaging, and photoacoustic mesoscopy. Functional photoacoustic imaging of the mouse brain hemodynamics was also conducted. We expect new applications to be enabled by the new mouse model for photoacoustic and ultrasound imaging.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryo Kitada ◽  
Jinhwan Kwon ◽  
Ryuichi Doizaki ◽  
Eri Nakagawa ◽  
Tsubasa Tanigawa ◽  
...  

AbstractUnlike the assumption of modern linguistics, there is non-arbitrary association between sound and meaning in sound symbolic words. Neuroimaging studies have suggested the unique contribution of the superior temporal sulcus to the processing of sound symbolism. However, because these findings are limited to the mapping between sound symbolism and visually presented objects, the processing of sound symbolic information may also involve the sensory-modality dependent mechanisms. Here, we conducted a functional magnetic resonance imaging experiment to test whether the brain regions engaged in the tactile processing of object properties are also involved in mapping sound symbolic information with tactually perceived object properties. Thirty-two healthy subjects conducted a matching task in which they judged the congruency between softness perceived by touch and softness associated with sound symbolic words. Congruency effect was observed in the orbitofrontal cortex, inferior frontal gyrus, insula, medial superior frontal gyrus, cingulate gyrus, and cerebellum. This effect in the insula and medial superior frontal gyri was overlapped with softness-related activity that was separately measured in the same subjects in the tactile experiment. These results indicate that the insula and medial superior frontal gyrus play a role in processing sound symbolic information and relating it to the tactile softness information.


Sign in / Sign up

Export Citation Format

Share Document