scholarly journals Investigating High Affinity Protein Self-Association by Fluorescence Optical Sedimentation Velocity Analytical Ultracentrifugation

2014 ◽  
Vol 106 (2) ◽  
pp. 151a
Author(s):  
Suvendu Lomash ◽  
Huaying Zhao ◽  
Carla Glasser ◽  
Mark L. Mayer ◽  
Peter Schuck
eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Huaying Zhao ◽  
Yan Fu ◽  
Carla Glasser ◽  
Eric J Andrade Alba ◽  
Mark L Mayer ◽  
...  

The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Orla M. Dunne ◽  
Xin Gao ◽  
Ruodan Nan ◽  
Jayesh Gor ◽  
Penelope J. Adamson ◽  
...  

Complement Factor H (CFH), with 20 short complement regulator (SCR) domains, regulates the alternative pathway of complement in part through the interaction of its C-terminal SCR-19 and SCR-20 domains with host cell-bound C3b and anionic oligosaccharides. In solution, CFH forms small amounts of oligomers, with one of its self-association sites being in the SCR-16/20 domains. In order to correlate CFH function with dimer formation and the occurrence of rare disease-associated variants in SCR-16/20, we identified the dimerization site in SCR-16/20. For this, we expressed, in Pichia pastoris, the five domains in SCR-16/20 and six fragments of this with one-three domains (SCR-19/20, SCR-18/20, SCR-17/18, SCR-16/18, SCR-17 and SCR-18). Size-exclusion chromatography suggested that SCR dimer formation occurred in several fragments. Dimer formation was clarified using analytical ultracentrifugation, where quantitative c(s) size distribution analyses showed that SCR-19/20 was monomeric, SCR-18/20 was slightly dimeric, SCR-16/20, SCR-16/18 and SCR-18 showed more dimer formation, and SCR-17 and SCR-17/18 were primarily dimeric with dissociation constants of ~5 µM. The combination of these results located the SCR-16/20 dimerization site at SCR-17 and SCR-18. X-ray solution scattering experiments and molecular modelling fits confirmed the dimer site to be at SCR-17/18, this dimer being a side-by-side association of the two domains. We propose that the self-association of CFH at SCR-17/18 enables higher concentrations of CFH to be achieved when SCR-19/20 are bound to host cell surfaces in order to protect these better during inflammation. Dimer formation at SCR-17/18 clarified the association of genetic variants throughout SCR-16/20 with renal disease.


2007 ◽  
Vol 361 (1) ◽  
pp. 24-30 ◽  
Author(s):  
John P. Gabrielson ◽  
Theodore W. Randolph ◽  
Brent S. Kendrick ◽  
Michael R. Stoner

Sign in / Sign up

Export Citation Format

Share Document