scholarly journals The Use of Ratiometric Fluorescence Measurements of the Voltage Sensitive Dye Di-4-ANEPPS to Examine Action Potential Characteristics and Drug Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

2016 ◽  
Vol 154 (2) ◽  
pp. 320-331 ◽  
Author(s):  
M. P. Hortigon-Vinagre ◽  
V. Zamora ◽  
F. L. Burton ◽  
J. Green ◽  
G. A. Gintant ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3370
Author(s):  
Christina Schmid ◽  
Najah Abi-Gerges ◽  
Michael Georg Leitner ◽  
Dietmar Zellner ◽  
Georg Rast

Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.


2021 ◽  
Vol 2 (4) ◽  
pp. 100859
Author(s):  
Joe Z. Zhang ◽  
Shane Rui Zhao ◽  
Chengyi Tu ◽  
Paul Pang ◽  
Mao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document