scholarly journals Functional Coupling of Bacterial Binding Protein with the Channel Pore of an Ionotropic Glutamate Receptor

2017 ◽  
Vol 112 (3) ◽  
pp. 419a
Author(s):  
Max Bernhard ◽  
Bodo Laube
2021 ◽  
Author(s):  
Max Bernhard ◽  
Bodo Laube

AbstractTetrameric ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the mammalian central nervous system and are involved in learning, memory formation, and pathological processes. Based on structural and sequence similarities of the ligand-binding and channel domains of iGluR subunits to bacterial binding proteins and potassium channels, iGluRs are thought to have originally arisen from their fusion. Here we report the functional coupling of the bacterial ectoine binding protein EhuB to the channel pore-forming transmembrane domains of the bacterial GluR0 receptor by stabilization of dimeric binding domains. Insertion of a disulfide bridge in the dimer interface abolished desensitization of the channel current analogous to mammalian iGluRs. These results demonstrate the functional compatibility of bacterial binding proteins to the gate of the channel pore of an iGluR. Moreover, our results highlight the modular structure and crucial role of binding domain dimerization in the functional evolution of iGluRs.


2011 ◽  
Vol 436 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Zhe Chen ◽  
Tong-Jin Zhao ◽  
Jie Li ◽  
Yan-Song Gao ◽  
Fan-Guo Meng ◽  
...  

Muscle contraction requires high energy fluxes, which are supplied by MM-CK (muscle-type creatine kinase) which couples to the myofibril. However, little is known about the detailed molecular mechanisms of how MM-CK participates in and is regulated during muscle contraction. In the present study, MM-CK is found to physically interact with the slow skeletal muscle-type MyBPC1 (myosin-binding protein C1). The interaction between MyBPC1 and MM-CK depended on the creatine concentration in a dose-dependent manner, but not on ATP, ADP or phosphocreatine. The MyBPC1–CK interaction favoured acidic conditions, and the two molecules dissociated at above pH 7.5. Domain-mapping experiments indicated that MM-CK binds to the C-terminal domains of MyBPC1, which is also the binding site of myosin. The functional coupling of myosin, MyBPC1 and MM-CK is further corroborated using an ATPase activity assay in which ATP expenditure accelerates upon the association of the three proteins, and the apparent Km value of myosin is therefore reduced. The results of the present study suggest that MyBPC1 acts as an adaptor to connect the ATP consumer (myosin) and the regenerator (MM-CK) for efficient energy metabolism and homoeostasis.


1998 ◽  
Vol 57 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Hsiu-Ming Chang ◽  
Yi-Mi Wu ◽  
Yen-Chung Chang ◽  
Yu-Chung Hsu ◽  
Hsiu-Ya Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document