bacterial binding
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 19)

H-INDEX

32
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7624
Author(s):  
Jing-Chang Luo ◽  
Jian Zhang ◽  
Li Sun

Lysozyme is a key effector molecule of the innate immune system in both vertebrate and invertebrate. It is classified into six types, one of which is the goose-type (g-type). To date, no study on g-type lysozyme in crustacean has been documented. Here, we report the identification and characterization of a g-type lysozyme (named LysG1) from the shrimp inhabiting a deep-sea hydrothermal vent in Manus Basin. LysG1 possesses conserved structural features of g-type lysozymes. The recombinant LysG1 (rLysG1) exhibited no muramidase activity and killed selectively Gram-negative bacteria in a manner that depended on temperature, pH, and metal ions. rLysG1 bound target bacteria via interaction with bacterial cell wall components, notably lipopolysaccharide (LPS), and induced cellular membrane permeabilization, which eventually caused cell lysis. The endotoxin-binding capacity enabled rLysG1 to alleviate the inflammatory response induced by LPS. Mutation analysis showed that the bacterial binding and killing activities of rLysG1 required the integrity of the conserved α3 and 4 helixes of the protein. Together, these results provide the first insight into the activity and working mechanism of g-type lysozyme in crustacean and deep-sea organisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Tong Cao ◽  
Xiao-Yi Pan ◽  
Meng Sun ◽  
Yan Liu ◽  
Jiang-Feng Lan

The hepatopancreas is an important digestive and immune organ in crustacean. There were low but stable numbers of microbes living in the hemolymph of crustacean, whereas the organs (including hepatopancreas) of crustacean were immersed in the hemolymph. It is very important to study the immune mechanism of the hepatopancreas against bacteria. In this study, a novel CTL (HepCL) with two CRDs, which was mainly expressed in the hepatopancreas, was identified in red swamp crayfish (Procambarus clarkii). HepCL binds to bacteria in vitro and could enhance bacterial clearance in vivo. Compared with the C-terminal CRD of HepCL (HepCL-C), the N-terminal CRD (HepCL-N) showed weaker bacterial binding ability in vitro and stronger bacterial clearance activity in vivo. The expression of some antimicrobial proteins, such as FLP, ALF1 and ALF5, was downregulated under knockdown of HepCL or blocked with Anti-HepCL after challenge with Vibrio in crayfish. These results demonstrated that HepCL might be involved in the antibacterial immune response by regulating the expression of antimicrobial proteins.


2021 ◽  
Vol 30 (4) ◽  
pp. 284-296
Author(s):  
Mark G Rippon ◽  
Alan A Rogers ◽  
Karen Ousey

Background: Traditionally, infections are treated with antimicrobials (for example, antibiotics, antiseptics, etc), but antimicrobial resistance (AMR) has become one of the most serious health threats of the 21st century (before the emergence of COVID-19). Wounds can be a source of infection by allowing unconstrained entry of microorganisms into the body, including antimicrobial-resistant bacteria. The development of new antimicrobials (particularly antibiotics) is not keeping pace with the evolution of resistant microorganisms and novel ways of addressing this problem are urgently required. One such initiative has been the development of antimicrobial stewardship (AMS) programmes, which educate healthcare workers, and control the prescribing and targeting of antimicrobials to reduce the likelihood of AMR. Of great importance has been the European Wound Management Association (EWMA) in supporting AMS by providing practical recommendations for optimising antimicrobial therapy for the treatment of wound infection. The use of wound dressings that use a physical sequestration and retention approach rather than antimicrobial agents to reduce bacterial burden offers a novel approach that supports AMS. Bacterial-binding by dressings and their physical removal, rather than active killing, minimises their damage and hence prevents the release of damaging endotoxins. Aim: Our objective is to highlight AMS for the promotion of the judicious use of antimicrobials and to investigate how dialkylcarbamoyl chloride (DACC)-coated dressings can support AMS goals. Method: MEDLINE, Cochrane Database of Systematic Reviews, and Google Scholar were searched to identify published articles describing data relating to AMS, and the use of a variety of wound dressings in the prevention and/or treatment of wound infections. The evidence supporting alternative wound dressings that can reduce bioburden and prevent and/or treat wound infection in a manner that does not kill or damage the microorganisms (for example, by actively binding and removing intact microorganisms from wounds) were then narratively reviewed. Results: The evidence reviewed here demonstrates that using bacterial-binding wound dressings that act in a physical manner (for example, DACC-coated dressings) as an alternative approach to preventing and/or treating infection in both acute and hard-to-heal wounds does not exacerbate AMR and supports AMS. Conclusion: Some wound dressings work via a mechanism that promotes the binding and physical uptake, sequestration and removal of intact microorganisms from the wound bed (for example, a wound dressing that uses DACC technology to successfully prevent/reduce infection). They provide a valuable tool that aligns with the requirements of AMS (for example, reducing the use of antimicrobials in wound treatment regimens) by effectively reducing wound bioburden without inducing/selecting for resistant bacteria.


2021 ◽  
Vol 29 (4) ◽  
pp. 664-673.e5
Author(s):  
Michael L. Patnode ◽  
Janaki L. Guruge ◽  
Juan J. Castillo ◽  
Garret A. Couture ◽  
Vincent Lombard ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 176
Author(s):  
Yujian Wang ◽  
Jian Zhang ◽  
Yuanyuan Sun ◽  
Li Sun

Crustin is a type of antimicrobial peptide and plays an important role in the innate immunity of arthropods. We report here the identification and characterization of a crustin (named Crus1) from the shrimp Rimicaris sp. inhabiting the deep-sea hydrothermal vent in Manus Basin (Papua New Guinea). Crus1 shares the highest identity (51.76%) with a Type I crustin of Penaeus vannamei and possesses a whey acidic protein (WAP) domain, which contains eight cysteine residues that form the conserved ‘four-disulfide core’ structure. Recombinant Crus1 (rCrus1) bound to peptidoglycan and lipoteichoic acid, and effectively killed Gram-positive bacteria in a manner that was dependent on pH, temperature, and disulfide linkage. rCrus1 induced membrane leakage and structure damage in the target bacteria, but had no effect on bacterial protoplasts. Serine substitution of each of the 8 Cys residues in the WAP domain did not affect the bacterial binding capacity but completely abolished the bactericidal activity of rCrus1. These results provide new insights into the characteristic and mechanism of the antimicrobial activity of deep sea crustins.


2021 ◽  
Vol 9 (2) ◽  
pp. 344
Author(s):  
Baopeng Yang ◽  
Chang Liu ◽  
Xiaolei Pan ◽  
Weixin Fu ◽  
Zheng Fan ◽  
...  

Polymyxin B and E (colistin) are the last resorts to treat multidrug-resistant Gram-negative pathogens. Pseudomonas aeruginosa is intrinsically resistant to a variety of antibiotics. The PhoP-PhoQ two-component regulatory system contributes to the resistance to polymyxins by regulating an arnBCADTEF-pmrE operon that encodes lipopolysaccharide modification enzymes. To identify additional PhoP-regulated genes that contribute to the tolerance to polymyxin B, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) assay and found novel PhoP binding sites on the chromosome. We further verified that PhoP directly controls the expression of PA14_46900, PA14_50740 and PA14_52340, and the operons of PA14_11970-PA14_11960 and PA14_52350-PA14_52370. Our results demonstrated that mutation of PA14_46900 increased the bacterial binding and susceptibility to polymyxin B. Meanwhile, mutation of PA14_11960 (papP), PA14_11970 (mpl), PA14_50740 (slyB), PA14_52350 (ppgS), and PA14_52370 (ppgH) reduced the bacterial survival rates and increased ethidium bromide influx under polymyxin B or Sodium dodecyl sulfate (SDS) treatment, indicating roles of these genes in maintaining membrane integrity in response to the stresses. By 1-N-phenylnaphthylamine (NPN) and propidium iodide (PI) staining assay, we found that papP and slyB are involved in maintaining outer membrane integrity, and mpl and ppgS-ppgH are involved in maintaining inner membrane integrity. Overall, our results reveal novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance.


2021 ◽  
Author(s):  
Max Bernhard ◽  
Bodo Laube

AbstractTetrameric ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the mammalian central nervous system and are involved in learning, memory formation, and pathological processes. Based on structural and sequence similarities of the ligand-binding and channel domains of iGluR subunits to bacterial binding proteins and potassium channels, iGluRs are thought to have originally arisen from their fusion. Here we report the functional coupling of the bacterial ectoine binding protein EhuB to the channel pore-forming transmembrane domains of the bacterial GluR0 receptor by stabilization of dimeric binding domains. Insertion of a disulfide bridge in the dimer interface abolished desensitization of the channel current analogous to mammalian iGluRs. These results demonstrate the functional compatibility of bacterial binding proteins to the gate of the channel pore of an iGluR. Moreover, our results highlight the modular structure and crucial role of binding domain dimerization in the functional evolution of iGluRs.


Author(s):  
Hongliang Zhao ◽  
Susan Eszterhas ◽  
Jacob Furlon ◽  
Hao Cheng ◽  
Karl E. Griswold

Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins’ general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity, lysis kinetics, and trended toward improved in vivo efficacy. More generally these studies provide unprecedented insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009222
Author(s):  
Meztlli O. Gaytán ◽  
Anirudh K. Singh ◽  
Shireen A. Woodiga ◽  
Surina A. Patel ◽  
Seon-Sook An ◽  
...  

Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document