scholarly journals Myosin Effects on Thin Filament Activation in Slow-Twitch Human Soleus Muscle Fibers

2018 ◽  
Vol 114 (3) ◽  
pp. 644a
Author(s):  
Alfredo J. Lopez-Davila ◽  
Robert Stehle ◽  
Stefan Zittrich ◽  
Birgit Piep ◽  
Faramarz Matinmehr ◽  
...  
2018 ◽  
Vol 150 (11) ◽  
pp. 1510-1522 ◽  
Author(s):  
Masataka Kawai ◽  
Tarek S. Karam ◽  
Justin Kolb ◽  
Li Wang ◽  
Henk L. Granzier

Nebulin (Neb) is associated with the thin filament in skeletal muscle cells, but its functions are not well understood. For this goal, we study skinned slow-twitch soleus muscle fibers from wild-type (Neb+) and conditional Neb knockout (Neb−) mice. We characterize cross-bridge (CB) kinetics and the elementary steps of the CB cycle by sinusoidal analysis during full Ca2+ activation and observe that Neb increases active tension 1.9-fold, active stiffness 2.7-fold, and rigor stiffness 3.0-fold. The ratio of stiffness during activation and rigor states is 62% in Neb+ fibers and 68% in Neb− fibers. These are approximately proportionate to the number of strongly attached CBs during activation. Because the thin filament length is 15% shorter in Neb− fibers than in Neb+ fibers, the increase in force per CB in the presence of Neb is ∼1.5 fold. The equilibrium constant of the CB detachment step (K2), its rate (k2), and the rate of the reverse force generation step (k−4) are larger in Neb+ fibers than in Neb− fibers. The rates of the force generation step (k4) and the reversal detachment step (k−2) change in the opposite direction. These effects can be explained by Le Chatelier’s principle: Increased CB strain promotes less force-generating state(s) and/or detached state(s). Further, when CB distributions among the six states are calculated, there is no significant difference in the number of strongly attached CBs between fibers with and without Neb. These results demonstrate that Neb increases force per CB. We also confirm that force is generated by isomerization of actomyosin (AM) from the AM.ADP.Pi state (ADP, adenosine diphophate; Pi, phosphate) to the AM*ADP.Pi state, where the same force is maintained after Pi release to result in the AM*ADP state. We propose that Neb changes the actin (and myosin) conformation for better ionic and hydrophobic/stereospecific AM interaction, and that the effect of Neb is similar to that of tropomyosin.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuo Wang ◽  
Bonnie Seaberg ◽  
Ximena Paez-Colasante ◽  
Mendell Rimer

Abstract To test the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2) in slow-twitch, type 1 skeletal muscle fibers, we studied the soleus muscle in mice genetically deficient for myofiber ERK1/2. Young adult mutant soleus was drastically wasted, with highly atrophied type 1 fibers, denervation at most synaptic sites, induction of “fetal” acetylcholine receptor gamma subunit (AChRγ), reduction of “adult” AChRε, and impaired mitochondrial biogenesis and function. In weanlings, fiber morphology and mitochondrial markers were mostly normal, yet AChRγ upregulation and AChRε downregulation were observed. Synaptic sites with fetal AChRs in weanling muscle were ~3% in control and ~40% in mutants, with most of the latter on type 1 fibers. These results suggest that: (1) ERK1/2 are critical for slow-twitch fiber growth; (2) a defective γ/ε-AChR subunit switch, preferentially at synapses on slow fibers, precedes wasting of mutant soleus; (3) denervation is likely to drive this wasting, and (4) the neuromuscular synapse is a primary subcellular target for muscle ERK1/2 function in vivo.


2020 ◽  
Vol 11 ◽  
Author(s):  
Alfredo Jesus López-Dávila ◽  
Joseph M. Chalovich ◽  
Stefan Zittrich ◽  
Birgit Piep ◽  
Faramarz Matinmehr ◽  
...  

2000 ◽  
Vol 88 (2) ◽  
pp. 567-572 ◽  
Author(s):  
Danny A. Riley ◽  
James L. W. Bain ◽  
Joyce L. Thompson ◽  
Robert H. Fitts ◽  
Jeffrey J. Widrick ◽  
...  

Soleus muscle fibers were examined electron microscopically from pre- and postflight biopsies of four astronauts orbited for 17 days during the Life and Microgravity Sciences Spacelab Mission (June 1996). Myofilament density and spacing were normalized to a 2.4-μm sarcomere length. Thick filament density (∼1,062 filaments/μm2) and spacing (∼32.5 nm) were unchanged by spaceflight. Preflight thin filament density (2,976/μm2) decreased significantly ( P < 0.01) to 2,215/μm2 in the overlap A band region as a result of a 17% filament loss and a 9% increase in short filaments. Normal fibers had 13% short thin filaments. The 26% decrease in thin filaments is consistent with preliminary findings of a 14% increase in the myosin-to-actin ratio. Lower thin filament density was calculated to increase thick-to-thin filament spacing in vivo from 17 to 23 nm. Decreased density is postulated to promote earlier cross-bridge detachment and faster contraction velocity. Atrophic fibers may be more susceptible to sarcomere reloading damage, because force per thin filament is estimated to increase by 23%.


2009 ◽  
Vol 96 (3) ◽  
pp. 1045-1055 ◽  
Author(s):  
Takumi Tamura ◽  
Jun'ichi Wakayama ◽  
Katsuaki Inoue ◽  
Naoto Yagi ◽  
Hiroyuki Iwamoto

1990 ◽  
Vol 258 (4) ◽  
pp. E693-E700 ◽  
Author(s):  
A. Bonen ◽  
J. C. McDermott ◽  
M. H. Tan

We examined the effects of selected hormones and pH on the rates of glyconeogenesis (L-[U-14C]-lactate----glycogen) and glycogenesis (D-[U-14C]glucose----glycogen) in mouse fast-twitch (FT) and slow-twitch muscles incubated in vitro (37 degrees C). Glyconeogenesis and glycogenesis increased linearly with increasing concentrations of lactate (5-20 mM) and glucose (2.5-10 mM), respectively, in both muscles. Glyconeogenesis was approximately three- to fourfold greater in the extensor digitorum longus (EDL) than in the soleus, whereas basal glycogenesis was twofold greater in the soleus muscle than in the EDL. Lactate accounted for up to 5% of the glycogen formed in the soleus and up to 32% in the EDL relative to the rates of glycogenesis (i.e., 5 mM glucose + 10 nM insulin) in each muscle. Corticosterone (10(-12)-10(-6) M) failed to alter glyconeogenesis, whereas this hormone reduced glycogenesis. Insulin (10 nM) markedly stimulated glycogenesis but failed to stimulate glyconeogenesis. The rates of both glycogenesis and glyconeogenesis were pH sensitive, with optimal rates at pH 6.5-7.0 in both muscles. Glyconeogenesis increased by 49% in the soleus and by 39% EDL at pH 6.5 compared with pH 7.4. Glycogenesis increased in the soleus (SOL) and EDL in the absence (SOL: +22%; EDL: +52%) and presence of insulin (SOL: +22%; EDL: +51%) at pH 6.5 when compared with pH 7.4. In additional experiments with the perfused rat hindquarter, rates of glyconeogenesis were shown to be highly correlated with proportion of FT muscle fibers in a muscle.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document