scholarly journals Cycling Cross-Bridges Contribute to Thin Filament Activation in Human Slow-Twitch Fibers

2020 ◽  
Vol 11 ◽  
Author(s):  
Alfredo Jesus López-Dávila ◽  
Joseph M. Chalovich ◽  
Stefan Zittrich ◽  
Birgit Piep ◽  
Faramarz Matinmehr ◽  
...  
2018 ◽  
Vol 114 (3) ◽  
pp. 644a
Author(s):  
Alfredo J. Lopez-Davila ◽  
Robert Stehle ◽  
Stefan Zittrich ◽  
Birgit Piep ◽  
Faramarz Matinmehr ◽  
...  

1991 ◽  
Vol 260 (5) ◽  
pp. C1060-C1070 ◽  
Author(s):  
H. L. Granzier ◽  
H. A. Akster ◽  
H. E. Ter Keurs

We studied a slow- and a fast-twitch muscle fiber type of the perch that have different thin filament lengths. The force-sarcomere length relations were measured, and it was tested whether their descending limbs were predicted by the cross-bridge theory. To determine the predicted relations, filament lengths were measured by electron microscopy. Measurements were corrected for shrinkage with the use of I-band and H-zone periodicities. Thick filament lengths of the two fiber types were found to be similar (1.63 +/- 0.06 and 1.64 +/- 0.10 microns for slow- and fast-twitch fibers, respectively), whereas the thin filament lengths were clearly different: 1.24 +/- 0.10 microns (n = 86) for the slow-twitch type and 0.94 +/- 0.04 microns (n = 94) for the fast type. The descending limbs of the two fiber types are therefore predicted to be shifted along the sarcomere length axis by approximately 0.6 microns. Sarcomere length was measured on-line by laser diffraction in a single region in the center of the fibers. The passive force-sarcomere strain relation increased much more steeply in the slow-twitch fibers. The descending limb of the active force-sarcomere length relation of fast twitch fibers was linear (r = 0.92), but was found at sarcomere lengths approximately 0.1 micron greater than predicted. The descending limb of the slow-twitch fibers was also linear (r = 0.87) but was now found at sarcomere lengths approximately 0.05 microns less than predicted. The difference in position of the descending limbs of the two fiber types amounted to 0.5 microns, approximately 0.1 micron less than predicted. The difference between measured and predicted descending limbs was statistically insignificant.


2015 ◽  
Vol 109 (10) ◽  
pp. 2101-2112 ◽  
Author(s):  
Yasser Aboelkassem ◽  
Jordan A. Bonilla ◽  
Kimberly J. McCabe ◽  
Stuart G. Campbell

2013 ◽  
Vol 104 (2) ◽  
pp. 453a
Author(s):  
Younss Ait Mou ◽  
Pieter P. de Tombe

1992 ◽  
Vol 262 (1) ◽  
pp. C229-C234 ◽  
Author(s):  
R. L. Ruff

Na current density and membrane capacitance were studied with the loose patch voltage clamp technique on rat fast- and slow-twitch skeletal muscle fibers at three different regions on the fibers: 1) the end plate border, 2) greater than 200 microns from the end plate (extrajunctional), and 3) on the end plate postsynaptic membrane. Fibers were treated with collagenase to improve visualization of the end plate and to enzymatically remove the nerve terminal. The capacitance of membrane patches was similar on fast- and slow-twitch fibers and patches of membrane on the end plate had twice the capacitance of patches elsewhere. For fast- and slow-twitch fibers, the sizes of the Na current normalized to the area of the patch were as follows: end plate greater than end plate border greater than extrajunctional. For both types of fibers, the amplitudes of the Na current normalized to the capacitance of the membrane patch were as follows: end plate approximately end plate border greater than extrajunctional. At each of the three regions, the Na current densities were larger on fast-twitch fibers and fast-twitch fibers had a larger increase in Na current density at the end plate border compared with extrajunctional membrane.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 243 ◽  
Author(s):  
Manting Ma ◽  
Bolin Cai ◽  
Liang Jiang ◽  
Bahareldin Ali Abdalla ◽  
Zhenhui Li ◽  
...  

Emerging studies indicate important roles for non-coding RNAs (ncRNAs) as essential regulators in myogenesis, but relatively less is known about their function. In our previous study, we found that lncRNA-Six1 can regulate Six1 in cis to participate in myogenesis. Here, we studied a microRNA (miRNA) that is specifically expressed in chickens (miR-1611). Interestingly, miR-1611 was found to contain potential binding sites for both lncRNA-Six1 and Six1, and it can interact with lncRNA-Six1 to regulate Six1 expression. Overexpression of miR-1611 represses the proliferation and differentiation of myoblasts. Moreover, miR-1611 is highly expressed in slow-twitch fibers, and it drives the transformation of fast-twitch muscle fibers to slow-twitch muscle fibers. Together, these data demonstrate that miR-1611 can mediate the regulation of Six1 by lncRNA-Six1, thereby affecting proliferation and differentiation of myoblasts and transformation of muscle fiber types.


Sign in / Sign up

Export Citation Format

Share Document